UH's winning team, ECHO, or Electrochemical CO2 Harvester from the Ocean, was awarded a $25,000 award from Chevron. Photo courtesy of UH

UH Energy named its second Innovation Commercialization Competition winners earlier this month with the goal of identifying promising ideas within the university that could have an impact in the energy transition.

The winning team, ECHO, or Electrochemical CO2 Harvester from the Ocean, was awarded a $25,000 award from Chevron, the event's sponsor, after presenting their pitch in front of a live Houston audience earlier this month.

“You don’t see the full impact of a good idea until someone figures out a way to convert it to a usable product or service that has value, brings it to market and makes money off of it—this is what makes it a sustainable business,” S. Radhakrishnan, the competition's coordinator and a retired University of Houston business professor, says in a statement. “To have a successful energy transition, we need many innovative ideas to be commercialized.”

Eighteen teams of University of Houston graduate students competed in the months-long competition and focused on projects related to carbon capture, carbon sequestration and lithium extraction from geothermal operations. Each team received a $2,000 stipend and mentoring throughout the competition.

The ECHO team was named the UH-Chevron Energy Transition Energy Innovation Challenge Winner. Comprised of four UH environmental engineering doctoral students (Prince Aleta, Ahmad Hassan, Mohsen Afshari and Abdelrahman Refale) and advised by Mim Rahimi, assistant professor of environmental engineering at the UH Cullen College of Engineering, the team pitched a membrane-less electrochemical process to capture carbon dioxide efficiently and sustainably. According to a statement from UH, the technology "seamlessly integrates with existing seawater intake infrastructure."

“As we’re from the STEM field, we normally work in lab environments, and I hear people say that what we’re working on has less commercial value and that it would take ages for them to commercialize,” Hassan adds in the statement. “This (competition) gave us the confidence and motivation to move forward.”

UH-based startup GeOME Analytics, led by UH's Moores Professor of Biology and Biochemistry and GeOME's president Preethi Gunaratne, was named the UH Energy Innovation Challenge Winner. The team pitched a new method for reservoir drainage diagnostics that uses the company's personalized DNA biomarkers. Other team members include Marcus Phillips, GeOME's vice president; postdoctoral researchers Partha Bhagavanthula and Nuwan Acharige; and UH graduate students, Micah Castillo, Dishan Adhikari and Shiyanth Thevasagayampillai.

Additional finalists included:

  • Team LiQuidium – Pitched lithium extraction from geothermal brines
  • Aldrogen – Pitched an A.I.-powered solution to improving grid resiliency while reducing emissions
  • MacAlgae – Pitched an environmentally conscious method of mycelium production

“The technology that was on display was fascinating,” Liz Schwarze, vice president of global exploration for Chevron, said in a statement. “I’m optimistic we can continue to grow this program, because it’s all about creating a culture where we can pursue our scientific and engineering dreams while partnering with business and entrepreneurship along the way to spinoff value to our community faster.”

Last month, UH and Chevron also partnered up to name its first-ever cohort of UH-Chevron Energy Graduate Fellows. The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron.
UH assistant professor Mim Rahimi published a paper on the development of his lab's emerging negative emissions technology known as electrochemical direct ocean capture. Photo via UH.edu

UH team develops method to use electricity to remove harmful carbon from ocean waters

ripple effect

Researchers at the University of Houston are developing a new, cost-effective way to help rid oceans of harmful carbon dioxide and fight the effects of climate change.

UH assistant professor Mim Rahimi published a paper on the development of his lab's emerging negative emissions technology known as electrochemical direct ocean capture (eDOC) in the journal Energy & Environmental Science this month.

The paper details how Rahimi's team is working to create electrochemical tubes to remove dissolved inorganic carbon from synthetic seawater, according to a release from UH. The process aims to amplify the ocean’s ability to absorb carbon and can easily be integrated into existing on-shore and off-shore infrastructure, including desalination plants and oil rigs.

Unlike other methods that involve complex processes, expensive materials and specialized membranes, the eDOC method focuses on adjusting the ocean water's acidity using affordable electrodes.

“While eDOC won’t single-handedly turn the tide on climate change, it enriches our mitigation toolkit,” Rahimi said in a statement. “In this global challenge, every innovative approach becomes invaluable.”

Rahimi's research is funded by a $250,000 grant from the U.S. Department of Energy and preliminary research was sponsored by UH Energy’s Center for Carbon Management in Energy.

“The promise of eDOC is undeniable, but scaling it, optimizing costs and achieving peak efficiency remain challenges we’re actively addressing,” he added in a statement.

Late last month, UH shared details on another carbon removal project it is involved with–this time focused on direct air capture (DAC). Known as the Pelican Gulf Coast Carbon Removal study–led by Louisiana State University and including UH and Shell—the project looks at the feasibility of a DAC hub that would pull carbon dioxide from the air and either store it in deep geological formations or use it to manufacture various products, such as concrete.

In August, UH announced that the project received nearly $4.9 million in grants, including almost $3 million from the U.S. Department of Energy. Click here to read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics company partners with Marathon Petroleum to scale fleet

robot alliance

Houston- and Boston-based Square Robot Inc. has announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC).

The partnership comes with an undisclosed amount of funding from Marathon, which Square Robot says will help "shape the design and development" of its submersible robotics platform and scale its fleet for nationwide tank inspections.

“Marathon’s partnership marks a major milestone in our mission to transform industrial tank inspection,” David Lamont, CEO of Square Robot, said in a news release. “They recognize the proven value of our robotic inspections—eliminating confined space entry, reducing the environmental impact, and delivering major cost efficiencies all while keeping tanks on-line and working. We’re excited to work together with such a great company to expand inspection capabilities and accelerate innovation across the industry.”

The company closed a $13 million series B last year. At the time of closing, Square Robot said it would put the funding toward international expansion in Europe and the Middle East.

Square Robot develops autonomous, submersible robots that are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments. Its newest tank inspection robot, known as the SR-3HT, became commercially available and certified to operate at a broader temperature range than previous models in the company's portfolio this fall.

The company was first founded in the Boston area in 2016 and launched its Houston office in 2019.

Eclipse Energy lands Weatherford investment to scale clean hydrogen tech

clean energy collab

Oil and gas giant Weatherford International (NASDAQ: WFRD) has made a capital investment for an undisclosed amount in Eclipse Energy as part of a collaborative partnership aimed at scaling and commercializing Eclipse's clean fuel technology.

According to a release, joint projects from the two Houston-based companies are expected to launch as soon as January 2026. The partnership aims to leverage Weatherford's global operations with Eclipse Energy's pioneering subsurface biotechnology that converts end-of-life oil fields into low-cost, sustainable hydrogen sources.

“We strongly believe the subsurface is the most overlooked climate asset,” Prabhdeep Singh Sekhon, CEO of Eclipse Energy, said in the release. “This partnership demonstrates how traditional oilfield expertise and frontier biotechnology can come together to transform the energy transition. Weatherford’s global reach and deep technical knowledge will accelerate our ability to scale our low-carbon technology rapidly and cost-effectively.”

Eclipse Energy, previously known as Gold H2, completed its first field trial this summer, demonstrating subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen, and it could also extend "beyond hydrogen, laying the foundation for the next generation of subsurface clean energy fuels."

Last month, Eclipse Energy won in the Energy Transition Business category at the 2025 Houston Innovation Awards. The company closed an $8 million series A this year and has plans to raise another round in 2026.