UH's winning team, ECHO, or Electrochemical CO2 Harvester from the Ocean, was awarded a $25,000 award from Chevron. Photo courtesy of UH

UH Energy named its second Innovation Commercialization Competition winners earlier this month with the goal of identifying promising ideas within the university that could have an impact in the energy transition.

The winning team, ECHO, or Electrochemical CO2 Harvester from the Ocean, was awarded a $25,000 award from Chevron, the event's sponsor, after presenting their pitch in front of a live Houston audience earlier this month.

“You don’t see the full impact of a good idea until someone figures out a way to convert it to a usable product or service that has value, brings it to market and makes money off of it—this is what makes it a sustainable business,” S. Radhakrishnan, the competition's coordinator and a retired University of Houston business professor, says in a statement. “To have a successful energy transition, we need many innovative ideas to be commercialized.”

Eighteen teams of University of Houston graduate students competed in the months-long competition and focused on projects related to carbon capture, carbon sequestration and lithium extraction from geothermal operations. Each team received a $2,000 stipend and mentoring throughout the competition.

The ECHO team was named the UH-Chevron Energy Transition Energy Innovation Challenge Winner. Comprised of four UH environmental engineering doctoral students (Prince Aleta, Ahmad Hassan, Mohsen Afshari and Abdelrahman Refale) and advised by Mim Rahimi, assistant professor of environmental engineering at the UH Cullen College of Engineering, the team pitched a membrane-less electrochemical process to capture carbon dioxide efficiently and sustainably. According to a statement from UH, the technology "seamlessly integrates with existing seawater intake infrastructure."

“As we’re from the STEM field, we normally work in lab environments, and I hear people say that what we’re working on has less commercial value and that it would take ages for them to commercialize,” Hassan adds in the statement. “This (competition) gave us the confidence and motivation to move forward.”

UH-based startup GeOME Analytics, led by UH's Moores Professor of Biology and Biochemistry and GeOME's president Preethi Gunaratne, was named the UH Energy Innovation Challenge Winner. The team pitched a new method for reservoir drainage diagnostics that uses the company's personalized DNA biomarkers. Other team members include Marcus Phillips, GeOME's vice president; postdoctoral researchers Partha Bhagavanthula and Nuwan Acharige; and UH graduate students, Micah Castillo, Dishan Adhikari and Shiyanth Thevasagayampillai.

Additional finalists included:

  • Team LiQuidium – Pitched lithium extraction from geothermal brines
  • Aldrogen – Pitched an A.I.-powered solution to improving grid resiliency while reducing emissions
  • MacAlgae – Pitched an environmentally conscious method of mycelium production

“The technology that was on display was fascinating,” Liz Schwarze, vice president of global exploration for Chevron, said in a statement. “I’m optimistic we can continue to grow this program, because it’s all about creating a culture where we can pursue our scientific and engineering dreams while partnering with business and entrepreneurship along the way to spinoff value to our community faster.”

Last month, UH and Chevron also partnered up to name its first-ever cohort of UH-Chevron Energy Graduate Fellows. The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron.
UH assistant professor Mim Rahimi published a paper on the development of his lab's emerging negative emissions technology known as electrochemical direct ocean capture. Photo via UH.edu

UH team develops method to use electricity to remove harmful carbon from ocean waters

ripple effect

Researchers at the University of Houston are developing a new, cost-effective way to help rid oceans of harmful carbon dioxide and fight the effects of climate change.

UH assistant professor Mim Rahimi published a paper on the development of his lab's emerging negative emissions technology known as electrochemical direct ocean capture (eDOC) in the journal Energy & Environmental Science this month.

The paper details how Rahimi's team is working to create electrochemical tubes to remove dissolved inorganic carbon from synthetic seawater, according to a release from UH. The process aims to amplify the ocean’s ability to absorb carbon and can easily be integrated into existing on-shore and off-shore infrastructure, including desalination plants and oil rigs.

Unlike other methods that involve complex processes, expensive materials and specialized membranes, the eDOC method focuses on adjusting the ocean water's acidity using affordable electrodes.

“While eDOC won’t single-handedly turn the tide on climate change, it enriches our mitigation toolkit,” Rahimi said in a statement. “In this global challenge, every innovative approach becomes invaluable.”

Rahimi's research is funded by a $250,000 grant from the U.S. Department of Energy and preliminary research was sponsored by UH Energy’s Center for Carbon Management in Energy.

“The promise of eDOC is undeniable, but scaling it, optimizing costs and achieving peak efficiency remain challenges we’re actively addressing,” he added in a statement.

Late last month, UH shared details on another carbon removal project it is involved with–this time focused on direct air capture (DAC). Known as the Pelican Gulf Coast Carbon Removal study–led by Louisiana State University and including UH and Shell—the project looks at the feasibility of a DAC hub that would pull carbon dioxide from the air and either store it in deep geological formations or use it to manufacture various products, such as concrete.

In August, UH announced that the project received nearly $4.9 million in grants, including almost $3 million from the U.S. Department of Energy. Click here to read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Fervo named to prestigious list of climate tech companies to watch

top honor

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.

6 must-attend Houston energy sector events in November 2025

Must-Attend Meetings

Editor's note: It's time to mark your calendar for November's must-attend Houston energy transition events, as they are front-loaded at the beginning fo the month. From a climatetech summit to the annual Houston Innovation Awards, these are the energy events to attend. Learn more below, and register now.

Nov. 4: Greentown Labs Climatetech Summit

Greentown Labs hosts its Houston Climatetech Summit, bringing together philanthropists, executives, and innovators in the energy transition space. Attendees will be able to explore climatetech solutions from dozens of startups, as well as hear insightful keynotes and discussions with industry leaders throughout the day.

The event begins with check-in and breakfast at 8 am on Nov. 4 at Greentown Labs. Register here.

Nov. 4-6: Operational Excellence in Oil and Gas Summit 2025

More than 300 industry leaders and change-makers will explore smarter, faster, more sustainable paths to operational excellence in the oil and gas industry at this annual three-day summit.

The event begins Nov. 4 at Norris Conference Center - City Centre Location. Register here.

Nov. 11-12: 20th Annual API Cybersecurity Conference for the Oil and Natural Gas Industry

The API Cybersecurity Conference has been an annual event since 2005. For 20 years, it has been the only cybersecurity conference dedicated to the oil and gas industry. Don't miss two days of compelling programming, networking and idea-exchange opportunities, as well as exhibitors sharing the latest products and services.

The event begins Nov. 11 at Woodlands Waterway Marriott. Register here.

Nov. 12-13: Energy Supply Chain & Procurement Summit

Senior executives from across the U.S. come to Houston, the energy capital, to discuss the energy supply chain, procurement and logistics ecosystems. The summit is focused on fostering dialogue and facilitating commercial relationships to further the mission of decarbonization and digitalization of the energy sector.

The event begins Nov. 12 at Hyatt Regency Houston West. Register here.

Nov. 13: Houston Innovation Awards

Houston's innovation ecosystem comes together for the fifth annual Houston Innovation Awards, taking place for the first time at Greentown Labs. Get your tickets to this intimate networking event and awards program, where winners in 10 prestigious categories — including Energy Transition Business, Scaleup of the Year, and Startup of the Year — will be revealed.

The event begins at 7 pm on Nov. 13 at Greentown Labs. Tickets are available here.

Nov. 14: Powering the Future via Geothermal, Lithium Extraction, and Battery Storage

Innovators and energy experts will converge for an in-depth panel discussion on how geothermal energy, lithium extraction and battery storage are shaping the next era of the low-carbon economy. At this event, hosted by Society for Low Carbon technologies, attendees will engage with thought leaders across sectors and explore how these technologies will help power a cleaner and smarter energy future.

This event begins at 9:10 am on Nov. 14 at NOV Towers. Register here.