global greenlight

Texas-based Tesla gets China's initial approval of self-driving software

Chinese officials told Tesla that Beijing has tentatively approved the automaker's plan to launch its “Full Self-Driving,” or FSD, software feature in the country. Photo via tesla.com

Shares of Tesla stock rallied Monday after the electric vehicle maker's CEO, Elon Musk, paid a surprise visit to Beijing over the weekend and reportedly won tentative approval for its driving software.

Musk met with a senior government official in the Chinese capital Sunday, just as the nation’s carmakers are showing off their latest electric vehicle models at the Beijing auto show.

According to The Wall Street Journal, which cited anonymous sources familiar with the matter, Chinese officials told Tesla that Beijing has tentatively approved the automaker's plan to launch its “Full Self-Driving,” or FSD, software feature in the country.

Although it's called FSD, the software still requires human supervision. On Friday the U.S. government’s auto safety agency said it is investigating whether last year’s recall of Tesla’s Autopilot driving system did enough to make sure drivers pay attention to the road. Tesla has reported 20 more crashes involving Autopilot since the recall, according to the National Highway Traffic Safety Administration.

In afternoon trading, shares in Tesla Inc., which is based in Austin, Texas, surged to end Monday up more than 15% — its biggest one-day jump since February 2020. For the year to date, shares are still down 22%.

Tesla has been contending with its stock slide and slowing production. Last week, the company said its first-quarter net income plunged by more than half, but it touted a newer, cheaper car and a fully autonomous robotaxi as catalysts for future growth.

Wedbush analyst Dan Ives called the news about the Chinese approval a “home run” for Tesla and maintained his “Outperform” rating on the stock.

“We note Tesla has stored all data collected by its Chinese fleet in Shanghai since 2021 as required by regulators in Beijing,” Ives wrote in a note to investors. “If Musk is able to obtain approval from Beijing to transfer data collected in China abroad this would be pivotal around the acceleration of training its algorithms for its autonomous technology globally.”

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News