The first Alto EVs have hit the road in Houston. Photo via Alto

Your next Alto ride might be electric. The Dallas-based car service has rolled out electric vehicles in Houston.

Alto, founded in Dallas in 2018 and launched in Houston in 2020, elevates ridesharing with its own fleet of company-owned, clearly branded SUVs driven by its staff of drivers. The company previously announced its plans to evolve its fleet into being completely electric, and the first EVs have hit the road, according to a company email.

"Our EV additions to the Houston fleet mark an important moment in our commitment to significantly reduce Alto's environmental impact," reads the email sent on September 5.

The new cars offer similar features to its existing fleet, including legroom, phone chargers, water bottles for riders, and more. Plus, the new cars — Kia EV9 — boast a quieter ride.

Alto has consistently grown in its Texas markets — which include Houston and Dallas — over the years, including expanding into Houston's suburbs.

Will Coleman, CEO of Alto, previously wrote in a guest column for InnovationMap that his priorities for starting the company included safety — but also sustainability. For years, Alto has been expressing interest in introducing EVs, with plans of having a completely electric fleet.

"This EV vision is one example of how a rideshare company can build a better and more accountable industry, and these steps also give Houstonians a more responsible and sustainable transportation solution," Coleman writes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

reduce, recharge, recycle

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.