Chinese officials told Tesla that Beijing has tentatively approved the automaker's plan to launch its “Full Self-Driving,” or FSD, software feature in the country. Photo via tesla.com

Authorities in Washington have determined that a Tesla that hit and killed a motorcyclist near Seattle in April was operating on the company's “Full Self Driving” system at the time of the crash.

Investigators from the Washington State Patrol made the discovery after downloading information from the event-data recorder on the 2022 Tesla Model S, agency spokesman Capt. Deion Glover said Tuesday.

“The investigation is still ongoing in this case,” Glover said in an email to The Associated Press. The Snohomish County Prosecutor will determine if any charges are filed in the case, he said.

Tesla CEO Elon Musk said last week that “Full Self Driving” should be able to run without human supervision by the end of this year. He has been promising a fleet of robotaxis for several years. During the company’s earnings conference call, he acknowledged that his predictions on the issue “have been overly optimistic in the past.”

A message was left Tuesday seeking comment from Texas-based Tesla.

After the crash in a suburban area about 15 miles (24 kilometers) northeast of Seattle, the driver told a trooper that he was using Tesla's Autopilot system and looked at his cellphone while the Tesla was moving.

“The next thing he knew there was a bang and the vehicle lurched forward as it accelerated and collided with the motorcycle in front of him,” the trooper wrote in a probable-cause document.

The 56-year-old driver was arrested for investigation of vehicular homicide “based on the admitted inattention to driving, while on Autopilot mode, and the distraction of the cell phone while moving forward, putting trust in the machine to drive for him,” the affidavit said.

The motorcyclist, Jeffrey Nissen, 28, of Stanwood, Washington, was under the car and pronounced dead at the scene, authorities reported.

Nissen's death is at least the second in the U.S. involving Tesla's “Full Self-Driving” system. In investigative documents, the U.S. National Highway Traffic Safety Administration said earlier it had found one fatality and 75 crashes while the system was being used. It wasn't clear whether the system was at fault in the fatality.

Tesla has two partially automated driving systems, “Full Self-Driving,” which can take on many driving tasks even on city streets, and Autopilot, which can keep a car in its lane and away from objects in front of it. Sometimes the names are confused by Tesla owners and the public.

Tesla says at present neither system can drive itself and that human drivers must be ready to take control at any time.

“Full Self-Driving” is being tested on public roads by selected Tesla owners. The company recently has been calling it FSD Supervised.

Musk said last week that he did not think approval by government regulators would be a limiting factor in deploying robotaxis. “If you’ve got billions of miles that show that in the future, unsupervised FSD is safer than humans, what regulator could really stand in the way of that?” he asked.

But Phil Koopman, a professor at Carnegie Mellon University who studies autonomous vehicle safety, said he doesn't see Tesla running robotaxis without human drivers on nearly all roads for another decade.

The safety record Musk cites is based on having a human driver supervise the automated system, he said. “Unless you have data showing that the driver never has to supervise the automation, then there's no basis for claiming they're going to be acceptably safe,” he said.

Musk has said Tesla will unveil a dedicated robotaxi vehicle at an event on Oct. 10. The event was delayed from Aug. 8 to make changes in the vehicle that Musk wanted.

Musk has been telling investors that Tesla is less of a car company and more of a robotics and artificial intelligence company. Many investors have put money into the company based on long-term prospects for robotics technology.

Musk has been touting self-driving vehicles as a growth catalyst for Tesla since “Full Self Driving” hardware went on sale late in 2015.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”