These three Houston innovators have been recognized by Time Magazine. Photos courtesy

Three Houston executives — Andrew Chang, Tim Latimer, and Cindy Taff — have been named to Time magazine’s prestigious list of the 100 Most Influential Climate Leaders in Business for 2024.

As managing director of United Airlines Ventures, Chang is striving to reduce the airline’s emissions by promoting the use of sustainable aviation fuel (SAF). Jets contribute to about two percent of global emissions, according to the International Energy Agency.

In 2023, Chang guided the launch of the Sustainable Flight Fund, which invests in climate-enhancing innovations for the airline sector. The fund aims to boost production of SAF and make it an affordable alternative fuel, Time says.

Chang tells Time that he’d like to see passage of climate legislation that would elevate the renewable energy sector.

“One of the most crucial legislative actions we could see in the next year is a focus on faster permitting processes for renewable energy projects,” Chang says. “This, coupled with speeding up the interconnection queue for renewable assets, would significantly reduce the time it takes for clean energy to come online.”

At Fervo Energy, Latimer, who’s co-founder and CEO, is leading efforts to make geothermal power “a viable alternative to fossil fuels,” says Time.

Fervo recently received government approval for a geothermal power project in Utah that the company indicates could power two million homes. In addition, Fervo has teamed up with Google to power the tech giant’s energy-gobbling data centers.

In an interview with Time, Latimer echoes Chang in expressing a need for reforms in the clean energy industry.

“Addressing climate change is going to require us to build an unprecedented amount of infrastructure so we can replace the current fossil fuel-dominated systems with cleaner solutions,” says Latimer. “Right now, many of the solutions we need are stalled out by a convoluted permitting and regulatory system that doesn’t prioritize clean infrastructure.”

Taff, CEO of geothermal energy provider Sage Geosystems, oversees her company’s work to connect what could be the world’s first geopressured geothermal storage to the electric grid, according to Time. In August, Sage announced a deal with Facebook owner Meta to produce 150 megawatts of geothermal energy for the tech company’s data centers.

Asked which climate solution, other than geothermal, deserves more attention or funding, Taff cites pumped storage hydropower.

“While lithium-ion batteries get a lot of the spotlight, pumped storage hydropower offers long-duration energy storage that can provide stability to the grid for days, not just hours,” Taff tells Time. “By storing excess energy during times of low demand and releasing it when renewables like solar and wind are not producing, it can play a critical role in balancing the intermittent nature of renewables. Investing in pumped storage hydropower infrastructure could be a game-changer in achieving a reliable, clean energy future.”

Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of TierraClimate. Photos courtesy

Houston's top energy transition founders explain their biggest challenges

overheard

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting." 

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change." 

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale." 

— Cindy Taff, CEO of SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

Want to work for one of the top energy startups in Houston? These ones are hiring. Photo via Getty Images

These top Houston energy transition startups are hiring

About a third of this year's startup finalists for the Houston Innovation Awards are hiring — from contract positions all the way up to senior-level roles. And seven of these companies are advancing innovative energy transition technologies.

The finalists, announced last week, range from the medical to energy to AI-related startups and will be celebrated next month on Thursday, November 14, at the Houston Innovation Awards at TMC Helix Park. Over 50 finalists will be recognized for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

Click here to secure your tickets to see which growing startups win.

When submitting their applications for the awards, every startup was asked if it was hiring. Let's take a look at what companies among the energy transition finalists you could land a job at.

Double-digit growth

Houston energy tech company Enovate Ai (previously known as Enovate Upstream) reported that it is hiring 10-plus positions. The company, with 35 current employees, helps automate business and operational processes for decarbonization and energy optimization. Its CEO and founder, Camilo Mejia, sat down for an interview with InnovationMap in 2020. Click here to read the Q&A.

Square Robot is hiring about 10 new Houston employees and 15 total between Houston and other markets, according to its application. The advanced robotics company was founded in Boston in 2016 and opened its Houston office in August 2019. It develops submersible robots for the energy industry, specifically for storage tank inspections and eliminating the need for humans to enter dangerous and toxic environments. Last year it reported to be hiring 10 to 30 employees as well, ahead of the 2023 Houston Innovators Award. It currently has 25 Houston employees and about 50 nationally.

InnoVent Renewables LLC is also hiring 15 new employees to be based in Mexico. The company launched last year with its proprietary continuous pyrolysis technology that can convert waste tires, plastics, and biomass into fuels and chemicals. The company scaled up in 2022 and has operations in Pune, India, and Monterrey, Mexico, with plans for aggressive growth across North America and Latin America. It has 20 employees in Mexico and one in Houston currently.

Senior roles and steady growth

Geothermal energy startup Sage Geosystems reported that it is looking to fill two senior roles in the company. It also said it anticipates further staff growth after its first commercial energy storage facility is commissioned at the end of the year in the San Antonio metro area. The company also recently expanded its partnership with the United States Department of Defense's Defense Innovation Unit and announced this month that it was selected to conduct geothermal project development initiatives at Naval Air Station in Corpus Christi. It has 12 full-time employees, according to its application.

Meanwhile, Syzygy Plasmonics is hiring four positions to add to its team of 120. The company was named to Fast Company's energy innovation list earlier this year.

Future roles

Other finalists reported that they are currently not hiring, but had plans to in the near future.

NanoTech Materials Inc., which recently moved to a new facility, is not currently. Hiring but said it plans with new funding during its series B.

Renewable energy startup CLS Wind is not hiring at this time but reported that it plans to when the company closes funding in late 2024.

———

A version of this article originally ran on InnovationMap.

Nearly 20 Houston startups and innovators were named finalists for the 2024 Houston Innovation Awards this week. Photo via Getty Images

Houston energy transition innovators named finalists for annual awards program

best of the rest

The Houston Innovation Awards have named its honorees for its 2024 awards event, and several clean energy innovators have made the cut.

The finalists, which were named on EnergyCapital's sister site InnovationMap this week, were decided by this year's judges after they reviewed over 130 applications. More 50 finalists will be recognized in particular for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

All of the honorees will be recognized at the event on November 14 and the winners will be named. Registration is open online.

Representing the energy industry, the startup finalists include:

  • Amperon, an AI platform powering the smart grid of the future, was named a finalist in the Energy Transition Business category.
  • ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms, was named a finalist in the Energy Transition Business and the AI/Data Science Business categories.
  • CLS Wind, a self-erection wind turbine tower system provider for the wind energy industry, was named a finalist in the Minority-Founded Business category.
  • Corrolytics, a technology startup founded to solve microbiologically influenced corrosion problems for industrial assets, was named a finalist in the Minority-Founded Business and People's Choice: Startup of the Year categories.
  • Elementium Materials, a battery technology with liquid electrolyte solutions, was named a finalist in the Energy Transition Business category.
  • Enovate Ai, a provider of business and operational process optimization for decarbonization and energy independence, was named a finalist in the AI/Data Science Business category.
  • FluxWorks, developer and manufacturer of magnetic gears and magnetic gear-integrated motors, was named a finalist in the Deep Tech Business category.
  • Gold H2, a startup that's transforming depleted oil fields into hydrogen-producing assets utilizing existing infrastructure, was named a finalist in the Minority-Founded Business and the Deep Tech Business categories.
  • Hertha Metals, developer of a technology that cost-effectively produces steel with fewer carbon emissions, was named a finalist in the Deep Tech Business category.
  • InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals, was named a finalist in the Energy Transition Business and the People's Choice: Startup of the Year categories.
  • NanoTech Materials, a chemical manufacturer that integrates novel heat-control technology with thermal insulation, fireproofing, and cool roof coatings to drastically improve efficiency and safety, was named a finalist in the Scaleup of the Year category.
  • SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography, was named a finalist in the Energy Transition Business category.
  • Square Robot, an advanced robotics company serving the energy industry and beyond by providing submersible robots for storage tank inspections, was named a finalist in the Scaleup of the Year category.
  • Syzygy Plasmonics, a company that's decarbonizing chemical production with a light-powered reactor platform that electrifies the production of hydrogen, syngas, and fuel with reliable, low-cost solutions, was named a finalist in the Scaleup of the Year category.
  • TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions, was named a finalist in the Energy Transition Business category.
  • Voyager Portal, a software platform that helps commodity traders and manufacturers in the O&G, chemicals, agriculture, mining, and project cargo sectors optimize the voyage management lifecycle, was named a finalist in the AI/Data Science Business category.

In addition to the startup finalists, two energy transition-focused organizations were recognized in the Community Champion Organization category, honoring a corporation, nonprofit, university, or other organization that plays a major role in the Houston innovation community. The two finalists in that category are:

  • Energy Tech Nexus, a new global energy and carbon tech hub focusing on hard tech solutions that provides mentor, accelerator and educational programs for entrepreneurs and underserved communities.
  • Greentown Houston, a climatetech incubator and convener for the energy transition community that provides community engagement and programming in partnership with corporations and other organizations.

Lastly, a few energy transition innovators were honored in the individual categories, including Carlos Estrada, growth partner at First Bight Ventures and head of venture acceleration at BioWell; Juliana Garaizar, founding partner of Energy Tech Nexus; and Neal Dikeman, partner at Energy Transition Ventures.

Sage Geosystems will onboard its technology at the Naval Air Station in Corpus Christi. Photo via Naval Air Station Corpus Christi/Facebook

Houston geothermal co. expands DOD partnership with South Texas initiative

seeing green

Expanding on its partnership with the United States Department of Defense's Defense Innovation Unit, Sage Geosystems has been selected to conduct geothermal project development initiatives at Naval Air Station in Corpus Christi.

Along with the Environmental Security Technology Certification Program, Sage will provide its proprietary Geopressured Geothermal Systems technology, will be able to evaluate the potential for geothermal baseload power generation to provide clean and consistent energy at the Naval Air Station base.

“We’re pleased to expand our partnership with the DOD at NAS Corpus Christi to demonstrate the advantages of geothermal technology for military energy independence,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

Sage is also conducting initiatives at Fort Bliss and has completed an analysis at the Ellington Field Joint Reserve Base. The analyses could “pave the way for expanding geothermal energy solutions across additional U.S. military installations,” according to Sage.

The company’s proprietary technology works by leveraging hot dry rock, which is a more abundant geothermal resource compared to traditional hydrothermal formations, and it provides energy resilience for infrastructures. In addition, Sage is building a 3 megawatt commercial EarthStore geothermal energy storage facility in Christine, Texas, which is expected to be completed by December. Sage also announced a partnership with Meta Platforms. With Meta Platforms, Sage will deliver up to 150 megawatt of geothermal power generation east of the Rocky Mountains.

The Naval Air Station Corpus Christi is considered a critical training and operations hub for the U.S. Navy, and the partnership with Sage shows the Navy's commitment to achieving net-zero carbon emissions by 2045. Sage’s technology will be assessed for its ability to create a microgrid, which can reduce reliance on the utility grid and ensure power supply during outages.

“As we advance our Geopressured Geothermal Systems, we see tremendous potential to not only provide carbon-free power, but also strengthen the operational capabilities of U.S. military installations in an increasingly digital and electric world,” Taff adds.

In September, the Air Force awarded Sage a grant of $1.9 million in a first-of-its kind contract to determine whether a power plant using Geopressured Geothermal Systems is able to generate clean energy needed for a base to achieve energy resilience.

Cindy Taff of Sage Geosystems shares her vision for her company and for the future of energy. Photo courtesy of Sage

Profile: Former Shell VP helps create a new way of making clean electricity with Houston company

leading energy

When Cindy Taff was a vice president at the giant oil and gas company Shell in Houston, her middle schooler Brianna would sometimes look over her shoulder as she worked from home.

“Why are you still working in oil and gas?” her daughter asked more than once. “Is there a future in it? Why aren’t you moving into something clean?”

The words weighed on Taff.

“As a parent you want to give direction, and was I giving her the right direction?” she recalled.

At Shell, Taff was in charge of drilling wells and bringing them into production. She worked on oil and natural gas that's called unconventional in the industry, because the oil or natural gas is difficult to get out of the ground — it doesn't naturally gush out like in movies. It's a term often used for oily shale rock. Taff was somewhat unconventional for the industry, too. Her coworkers used to tease her for driving an efficient hybrid.

“You’re not helping oil and gas prices by driving a Prius," they'd say.

______

EDITOR’S NOTE: This is part of an occasional series of personal stories from the energy transition — the change away from a fossil-fuel based world that largely causes climate change.

______

Taff wanted Shell to pursue the energy that comes from the Earth's natural heat — geothermal. Her team looked into it, but Shell never greenlit any of those projects, saying it would take too much time to recoup the investment.

When Brianna went to college, she was passionate about energy too, but she wanted to work on renewables. After her sophomore year, in the summer of 2020, she got an internship at a geothermal company — one that in fact had just been launched by Taff's former colleagues at Shell — Sage Geosystems in Houston.

Now it was Taff looking over her daughter's shoulder and asking question as she worked from home during the pandemic.

And Sage executives were talking to Brianna, too. “We could use your mom here," they said. "Can you get her to come work for us?” Brianna recalled recently.

That's how Cindy Taff left her 36-year career at Shell to become chief operating officer at Sage.

“I didn't understand why Shell wasn't pursuing it,” she said about applying the company's drilling expertise to heat energy. "Then I got this great opportunity to pivot from oil and gas and work with these guys that I have the utmost respect for. And also, I wanted to make my daughter proud, quite frankly.”

Brianna Byrd, now 24, is the operations engineer and spokesperson at the company. She's glad her mother, now CEO, left oil and gas.

“Of course I’m biased, she’s my mom, but I don’t think Sage would be where it is without her,” she said.

The United States is a world leader in electricity made from geothermal energy, but this kind of electricity still accounts for less than half a percent of the nation’s total large-scale generation, according to the U.S. Energy Information Administration. In 2023, most geothermal electricity came from California, Nevada, Utah, Hawaii, Oregon, Idaho and New Mexico, where there are reservoirs of steam, or very hot water, close to the surface.

The Energy Department estimates this next generation of geothermal projects, like what Sage is doing, could provide some 90 gigawatts by 2050 — enough to power 65 million homes or more. That hinges on private investment, and on companies like Sage introducing this form of energy to regions where, until now, it’s been thought to be impossible.

How it works

Sage has two main technologies: The first makes electricity out of heat. The company drills wells and fractures hot, dry rock. Then electric pumps push water into those fractures, heating it up, and the hot water gets jettisoned to the surface where it spins a turbine.

But a funny thing happened during testing in Starr County, Texas. In late 2021, the team realized much of their technology could also be used to store energy.

If that works, it could be a big deal. Currently, to store energy at large scale, the United States is adding batteries, mostly lithium-ion type, to solar and wind projects, so they can charge up and send electricity back to the electric grid when the sun is not shining or the wind is not blowing. These batteries typically supply four hours maximum power.

Sage envisions some of its technology placed at solar and wind farms, too. When electricity demand is low, they'll use extra energy from a solar or wind farm to run electric pumps, pumping water into the underground fractures, leaving it there until demand for electricity increases — storing the energy beneath the Earth's surface for hours, days or even weeks.

It's a novel way to use the technology, said Silviu Livescu, lead author on a report looking at the future of geothermal in Texas. Livescu knows Taff and has followed the company's progress.

“It’s the right moment for companies like Sage with a purpose, with a mission and with the technology to show that geothermal indeed is the energy source we need to address climate change,” said Livescu, who co-founded a different geothermal startup in Austin, Texas.

These days, Taff is often out in front, talking with politicians and policymakers about the potential of geothermal. She attended the United Nations COP28 climate talks last year to share her vision for this kind of energy.

Sage has raised $30 million so far and is growing.

It's building a small (3-megawatt), geothermal energy storage system at San Miguel Electric Cooperative, Inc., south of San Antonio this year. It's working with U.S. military facilities in Texas that see geothermal as a way to power their bases securely. Sage recently announced partnerships for heating communities in Bucharest, Romania; clean electricity from geothermal for Meta's data centers, and energy storage and geothermal projects in California.

The company is final-testing a proprietary turbine to more efficiently convert heat to electricity.

Because of her oil and gas background, Taff said she knows geothermal will only be adopted widely if the cost comes down. The mantra at Sage is: It's going to be clean and it's going to be cheap. She's excited to be working in a field she feels is on the cusp of playing a big role in cleaning and stabilizing the electrical grid.

“I’ve never looked back,” she said. “I love what I’m doing and I think it’s going to be transformative.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.