Branch Energy aims to provide customers with clean energy at a lower cost than competitors. Photo via Getty Images

A tech-driven retail energy provider based in Houston has secured an oversubscribed series A round of funding.

Branch Energy raised a $10.8 million round led by climate-focused venture capital firm Prelude Ventures with co-investor Zero Infinity Partners, an infrastructure tech-focused firm. The fresh funding will go toward accelerating the company's battery management tech and build out the infrastructure of its field services.

A vertically integrated power provider, Branch Energy aims to provide customers with demand management software and battery storage systems to ensure long-term, stable, and clean energy at a lower cost than competitors.

“Our century-old grid design is not equipped for the complexity of today’s energy needs," Alex Ince-Cushman, Branch Energy co-founder and CEO, says in a news release. “Optimizing distributed energy assets in real-time will play an increasingly important role in managing the grid. We built Branch from the ground up as a technology company, allowing us to deliver value to customers in this new era of distributed energy by reducing costs while improving reliability."

The company chose Texas as its inaugural market based on the stress of the grid in the state, the company says in the release. Since 2021 when Branch Energy launched, it has signed up thousands of customers for its 100 percent clean energy service. The business proposition includes lowering customer's energy bills by 5 to 10 percent.

“The power grid, especially in Texas, requires distributed generation and flexible loads as basic economics drives deployment of more renewable resources,” Tim Woodward, managing partner at Prelude Ventures, adds. “Across the country, we are experiencing a major shift toward a decentralized and decarbonized grid. Branch Energy is bringing value to its customers through deployment of intelligent storage that lowers costs and improves reliability.”

Branch Energy, which is available now in some Texas regions, had previously raised $5.5 million in seed and pre-seed funding, per Crunchbase.

Things are heating up in Utah for Fervo Energy. Photo via fervoenergy.com

Houston company breaks ground on 'world's largest' geothermal project with next-generation tech

coming soon

Houston-based cleantech startup Fervo Energy has broken ground on what it's describing as the "world’s largest next-gen geothermal project."

Fervo says the a 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

The company says Cape Station will generate about 6,600 construction jobs and 160 full-time jobs.

“Beaver County, Utah, is the perfect place to deploy our next-generation geothermal technology,” Tim Latimer, co-founder and CEO of Fervo, says in a news release. “The warmth and hospitality we have experienced from the communities of Milford and Beaver have allowed us to embark on a clean energy journey none of us could have imagined just a few years ago.”

In February, the U.S. Bureau of Land Management gave its blessing to the project, allowing Fervo to undertake exploration activities at the site.

“Geothermal innovations like those pioneered by Fervo will play a critical role in extending Utah’s energy leadership for generations to come,” says Utah Gov. Spencer Cox, who attended the groundbreaking ceremony.

Since being founded in 2017, Fervo has raised more than $180 million in funding. Its highest-profile investors are billionaires Jeff Bezos, Richard Branson and Bill Gates. They’re backing Fervo through Breakthrough Energy Ventures, whose managing director sits on Fervo’s board of directors.

Other investors include the Canada Pension Plan Investment Board (CPP Investments), DCVC, Devon Energy, Liberty Energy, Helmerich & Payne, Macquarie, the Grantham Foundation for the Protection of the Environment, Impact Science Ventures, and Prelude Ventures.

Fervo aims to generate more than one gigawatt of geothermal energy by 2030. On average, one gigawatt of power can provide electricity for 750,000 homes. Two coal-fired power plants can generate roughly the same amount of electricity.

Earlier this year, Fervo announced results of a test at Nevada’s Project Red site, which will supply power to Google data centers in the Las Vegas area. Fervo says the 30-day well test established Project Red as the “most productive enhanced geothermal system in history,” the company says. The test generated 3.5 megawatts of electricity.

In 2021, Fervo and Google signed the world’s first corporate agreement to produce geothermal power. Under the deal, Fervo will generate five megawatts of geothermal energy for Google through the Nevada project, which is set to go online later this year.

What is it going to take to make Houston a leader in the energy transition? Access to capital, according to a panel from Venture Houston. Photo by Natalie Harms/EnergyCapital

Experts: Houston needs to unlock early-stage capital to lead the energy transition

show me the money

Last week, Tim Latimer sat on a panel that consisted mostly of his company's investors and discussed what he felt the missing piece still was for Houston's energy transition and innovation community.

“There’s no better place in the world than Houston to build and scale a climate tech startup," he says on a Venture Houston panel titled Seeding Sustainability: Unlocking the Power of Early Stage Investments.

“But I don’t know if I’m ready to make the claim that we’re the best place to start a business,” he adds.

Latimer, who co-founded Fervo Energy in the Bay Area in 2017 before relocating the company to Houston, explains that his company raised capital on the West Coast ahead of moving to Texas to grow and scale. This allowed the company, which recently announced the success of a major pilot, to tap into early stage funding and then make the most of every dollar raised by moving to a region where the money would last longer — and where there's talent, customers, and more.

“The dream for us to have a truly unlocked ecosystem is that the whole pattern can happen here in Houston, and the gap I see is that capital formation side,” he says.

Latimer was joined on the panel by some of Fervo's investors: Mark Cupta, managing partner of Prelude Ventures; Andrea Course, venture principal of Shell Ventures; and Joshua Posamentier, co-founder and managing partner of Congruent Ventures.

Each of the panelists weighed in on what it would take for Houston to emerge as a leader within the global energy transition. Cupta says that it's going to take the city time to build out activity, successful outcomes, talent, money, and more.

“The venture capital community is an ecosystem, and that ecosystem consists of multiple stakeholders that all have to work in concert with each other," he says. "It has to be a flywheel that spins up over time.”

Course, the only Houston-based investor on the panel, says that Houston has potential because it's got talent, industry, and money, or TIM, as she describes.

“I think Houston is actually the perfect place for becoming the energy transition capital. If you ask me, I think we already are.” Course explains. “It really just takes people doing what we’re doing now to make it even greater."

Posamentier, who previously shared his outlook on Houston in a Q&A with EnergyCapital, explains that access to funding isn't the only issue. “There’s a lot more money than there are investable opportunities at the moment,” he says.

The panel also weighed in on the difference between venture capital and funding coming out of corporations.

“VCs and CVCs have different timelines,” Course explains, saying VC firms have 5- to 7-year life cycles. After that, they need to see an exit to be able to provide that return. “With a CVC, we don’t really have that. Of course we want to show financial returns, but we are long-duration capital.

CVC is patient capital with value-add investors, but Course admits there's a longer due diligence because she wants to find a strategic stakeholder before an investment is made.

“The worst thing that could happen is that Shell gives you money, but they don’t give you business. We don’t want that,” she says.

Waiting for that right investor can be extremely important to company success, Latimer says from the founder perspective.

“It’s hard to put a hard dollar value on help, but our ability to have advisers and introductions from different types of investors … makes all the difference in the world,” he says on the panel. “A lot of startup founders think about their org design very critically and who they want to bring onto the team, and you should be deliberate on your cap table.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

reduce, recharge, recycle

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.