Through a first-of-its-kind proposal, Las Vegas-based public utility NV Energy would supply geothermal power generated by Fervo Energy for Google’s two data centers in Nevada. Screenshot via Google

Houston-based Fervo Energy’s geothermal energy soon will help power the world’s most popular website.

Through a first-of-its-kind proposal, Las Vegas-based public utility NV Energy would supply 115 megawatts of geothermal power generated by Fervo for Google’s two data centers in Nevada. Financial terms weren’t disclosed.

In 2021, Google teamed up with Fervo to develop a pilot project for geothermal power in Nevada. Two years later, electricity from this project started flowing into the Nevada grid serving the two Google data centers. Google spent $600 million to build each of the centers, which are in Henderson, a Las Vegas suburb, and Storey County, which is east of Reno.

The proposed agreement with NV Energy would bring about 25 times more geothermal power capacity to the Nevada grid, Google says, and enable more around-the-clock clean power for the search engine company’s Nevada data centers.

A data center gobbles up 10 to 50 times the energy per square foot of floor space that a typical office building does, according to the U.S. Department of Energy.

“NV Energy and Google’s partnership to develop new solutions to bring clean … energy technology — like enhanced geothermal — onto Nevada’s grid at this scale is remarkable. This innovative proposal will not be paid for by NV Energy’s other customers but will help ensure all our customers benefit from cleaner, greener energy resources,” Doug Cannon, president and CEO of NV Energy, says in a Google blog post.

Utility regulators still must sign off on the proposal.

“If approved, it provides a blueprint for other utilities and large customers in Nevada to accelerate clean energy goals,” Cannon says.

Tokyo Gas America has scored over $100 million in investment tax credits for project in Brazoria County that will supply power to Houstonians.

Houston energy co. secures $118.5M for battery energy storage project in south Texas

renewables coming soon

Houston-based Tokyo Gas America has received $118.5 million in investment tax credits for its battery energy storage system in Brazoria County. The system will supply power for the Houston-area territory served by the Electric Reliability Council of Texas (ERCOT).

San Francisco-based institutional fund sponsor Foss & Co. provided the tax equity for the Longbow BESS project, being developed by New York City-based Clean Capital Partners. Construction on the 174-megawatt battery energy storage system began earlier this year, and the project is expected to come online this summer.

“Longbow BESS represents a significant step forward in our commitment to providing clean and reliable energy solutions,” Ken Kiriishi, senior vice president of Tokyo Gas America, a wholly owned subsidiary of Tokyo Gas Co., says in a news release.

Earlier this year, Tokyo Gas America completed its $216 million purchase of Longbow BESS from Clean Capital Partners.

With the goal of owning and operating more than five gigawatts of renewable generation projects by 2030, Tokyo Gas America entered the U.S. renewables market in 2020 through its acquisition of the Aktina Solar Project. Tokyo Gas America bought the project from Chicago-based Hecate Energy, which develops, owns, and operates renewable energy projects in the U.S.

Aktina is the largest solar project in Texas, encompassing 1.4 million solar modules across 4,000 acres in Wharton County. The project, capable of generating as much as 500 megawatts of renewable energy, can power as many as 100,000 homes.

Aktina, which came online in 2021, supplies power to the ERCOT wholesale market. Construction of the roughly $3.2 million project recently wrapped up.

In February, Tokyo Gas America announced it had set up two subsidiaries to promote it gas marketing and trading operations in North America. As part of this venture, Tokyo Gas bought a 49 percent stake in ARM Energy Trading. Houston-based ARM Energy Holdings is the majority owner of ARM Energy Trading.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Global co. opens state-of-the-art energy innovation hub in Houston

flagship facility

French multinational company Schneider Electric has opened a new 10,500-square-foot, state-of-the-art Energy Innovation Center in Houston.

The new facility is located in Houston’s Energy Corridor and is designed to “foster increased collaboration and technological advancements across the entire value chain,” according to a news release from the company. The new Houston location joins Schneider's existing innovation hubs in Paris, Singapore and Bangalore.

The venue will serve as a training center for process control engineers, production superintendents, manufacturing managers, technical leads and plant operations personnel. It can simulate various real-world scenarios in refineries, combined-cycle power plants, ethylene plants, recovery boilers and chemical reactors.

It includes an interactive control room and artificial Intelligence applications that “highlight the future of industrial automation,” according to the release.

"Digitalization is significantly enhancing the global competitiveness of the U.S. through continuous innovation and increased investment into next-generation technology," Aamir Paul, Schneider Electric's President of North America Operations, said in the release.

Texas has over 4,100 Schneider Electric employees, the most among U.S. states, and has facilities in El Paso, the Dallas-Fort Worth metroplex and other areas.

"This flagship facility in the Energy Capital of the World underscores our commitment to driving the future of software-defined automation for our customers in Houston and beyond,” Paul added in the release. “With this announcement, we are excited to continue supporting the nation's ambitions around competitive, efficient and cost-effective manufacturing."

Schneider Electric says the new Houston facility is part of its expansion plans in the U.S. The company plans to invest over $700 million in its U.S. operations through 2027, which also includes an expansion at its El Paso campus.

The company also announced plans to invest in solar and battery storage systems developed, built, and operated by Houston-based ENGIE North America last year. Read more here.

Hydrogen industry could have major impact on Texas water resources, study says

water works

Just as the data center industry thrives on electricity, the hydrogen industry thrives on water.

A new study from researchers at the University of Texas at Austin found that by 2050, new hydrogen production facilities could account for 2 percent to nearly 7 percent of water demand in the state. The impact could be especially dramatic along the Gulf Coast, where most of the state’s hydrogen production facilities are already built or are being planned.

The research was published in the journal Sustainability.

The study reported that "most existing and proposed hydrogen production infrastructures are within projected water-strained cities and counties, such as Houston in Harris County and Corpus Christi in Nueces County."

Compared with municipal water supplies or irrigation systems, the hydrogen industry’s demand for water is comparatively small, the study’s lead author, Ning Lin, an energy economist at UT’s Bureau of Economic Geology, said in a news release. But hydrogen-fueled demand could strain communities that already are grappling with current and future water shortages.

“Where you put a project can make a huge difference locally,” Lin says. “With multiple hydrogen facilities planned in water-stressed Gulf Coast counties, this study highlights the urgent need for integrated water and energy planning and provides a solid foundation to help policymakers, industry, and communities make informed decisions about hydrogen and water management.”

To forecast water demand, Lin and her colleagues crunched data from a 2024 National Petroleum Council study that estimated the regional hydrogen demand from 2030 to 2050 based on two energy policy scenarios.

As part of the study, researchers reviewed water use and water quality for various hydrogen production methods that affect whether water remaining from production can be recycled.

“In order to plan for water needs, somebody has to figure out what those future demands might look like, and this paper puts some numbers to (it) that, I think, will be very helpful,” Robert Mace, executive director of the Meadows Center for Water and the Environment at Texas State University, who was not part of the study, added in the release.