Baker Hughes has incorporated a new tech platform for its CCUS operations. Photo via Getty Images

Baker Hughes has announced the debut of its digital platform to track CO2 volumes in real time, CarbonEdge. CarbonEdge utilizes carbon capture utilization and sequestration journey, which includes pipeline flows.

Powered by Cordant, the Houston-based Baker Hughes boasts CarbonEdge is “the first end-to-end, risk-based digital platform for CCUS operations that provides comprehensive support, regulatory reporting, and operational risk management,” according to the company.

The connectivity across the entire CCUS project lifecycle will assist customers to better improve decision-making, enhance operational efficiency, identify and manage risk, and simplify regulatory reporting. Applicable to any CCUS infrastructure applied across multiple industries, CarbonEdge joins other Baker Hughes’ digital solutions in JewelSuite, Leucipa, and Cordant, which all span the energy and industrial value chains to help ensure lower emissions.

“CCUS technology solutions are essential for driving decarbonization of the energy and industrial sectors on our path to solving for climate change,” Baker Hughes Chairman and CEO Lorenzo Simonelli says in a news release.

The launch customer will be Wabash Valley Resources (WVR), which is a low-carbon ammonia fertilizer pioneer in Indiana.WVR will deploy Baker Hughes’ CarbonEdge platform to monitor, measure, and verify volumes of CO2 transported, collected, and sequestered underground.

“With the launch of CarbonEdge, we not only expand our portfolio of digital solutions to support new energies and empower our customers’ ability to mitigate risk while enhancing operational efficiency, but also take a bold step toward a future with more sustainable energy development,” Simonelli continues.”We look forward to working alongside Wabash Valley Resources to refine and evolve CarbonEdge, ensuring it continues to meet the dynamic needs of a rapidly changing industry.”
Baker Hughes has officially moved into its new headquarters in Houston. Photo via bakerhughes.com

Baker Hughes unveils new HQ in Houston's Energy Corridor

moving in

Houston-based Baker Hughes officially opened the doors to its new headquarters in the Energy Corridor last week.

At a celebration held Oct. 23, the energy service company unveiled its new space within Energy Center II at 575 N. Dairy Ashford. The move represents a consolidation of Baker Hughes' various offices in the Houston-area as the company decreases its corporate footprint by about 346,000-square-feet, according to a report from the Houston Chronicle.

It is moving from its former headquarters in North Houston, near IAH. About 1,300 employees will work from the building, according to a statement from Baker Hughes.

“The opening of our new Houston headquarters is an important moment in our strategic transformation as we continue to take energy forward,” Lorenzo Simonelli, Baker Hughes chairman and CEO, said in a statement. “Collaboration will be key to solving for the energy transition. We look forward to collaborating with our colleagues, partners, customers and new neighbors in the Energy Corridor to solve the Energy Trilemma.”

Additionally, the company reported that the new space will aim to help the company reduce costs, cut emissions, create more flexible workspaces and strengthen relationships within the Energy Corridor.

The new HQ includes features such as

  • Tech- and food-free quiet zones
  • Hybrid experience rooms for enhanced online meetings
  • About 25 open collaboration spaces
  • About 40 meeting rooms, including hybrid meeting rooms and a creative thinking room
  • About 12 community spaces
  • Nursing mothers suites
  • Prayer and meditation rooms

In other HQ news, ExxonMobil officially changed its headquarters to Houston over the summer. A July 5 filing with the United States Securities and Exchange Commission showed a significant step toward the HQ move that Exxon originally announced in early 2022.

For the third time, the Baker Hughes Foundation has granted funding to One Tree Planted, totalling its impact to $1 million toward reforestation. Photo via onetreeplanted.org

Houston energy company triples down on funding to tree planting nonprofit with $1M total impact

reforestation station

Baker Hughes has doled out another grant for an organization that's growing a global impact.

The Baker Hughes Foundation announced its third grant to One Tree Planted, which is hoping to put 1 million new trees into the ecosystems of 17 countries. The foundation initially donated $250,000 to the organization in 2021 and followed up with a $350,000 grant in 2022. This most recent contribution, which was announced this week, did not disclose the monetary amount.

“This milestone speaks to our commitment to environmental sustainability, and I want to recognize the contributions of our employees, who last year came together across the world to plant trees in the areas where we work and live,” Baker Hughes Chairman and CEO Lorenzo Simonelli says in a news release. “I am grateful for their continued dedication to our sustainability goals and am inspired by what we and One Tree Planted can accomplish together.”

According to the company, Baker Hughes Foundation has contributed an impact of $1 million to One Tree Planted over the past three years. Its 2021 grant resulted in planting 268,000 trees, and in 2022, 350,000 trees were planted. With this latest grant, Baker Hughes adds 382,000 trees to that tally, targeting several areas where the company has a business presence, including the Andes region of South America; British Columbia, Canada; China; France; Germany; Scotland; and Texas, U.S.

“We all have a role to play in protecting the environment and combating climate change, and we admire the Baker Hughes Foundation’s continued dedication to being a force for good,” Matt Hill, founder of One Tree Planted, adds in the release. “With the Baker Hughes Foundation’s impressive commitment to giving back to the environment by planting 1 million trees to date, we are making a powerful impact for nature and communities in 17 countries around the world.”

Last month, the Baker Hughes Foundation doled out a $100,000 grant to the University of Houston Energy Transition Institute. The funding reportedly will work towards the ETI’s goals to support workforce development programs, and environmental justice research. The program addresses the impact of energy transition solutions in geographical areas most-affected by environmental impacts.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

The longest conveyer belt in the U.S. is moving sand in Texas

The Dune Express

It's longer than the width of Rhode Island, snakes across the oil fields of the southwest U.S. and crawls at 10 mph – too slow for a truck and too long for a train.

It's a new sight: the longest conveyer belt in America.

Atlas Energy Solutions, a Texas-based oil field company, has installed a 42-mile long conveyer belt to transport millions of tons of sand for hydraulic fracturing. The belt the company named “The Dune Express” runs from tiny Kermit, Texas, and across state borders into Lea County, New Mexico. Tall and lanky with lids that resemble solar modules, the steel structure could almost be mistaken for a roller coaster.

In remote West Texas, there are few people to marvel at the unusual machine in Kermit, a city with a population of less than 6,000, where the sand is typically hauled by tractor-trailers. During fracking, liquid is pumped into the ground at a high pressure to create holes, or fractures, that release oil. The sand helps keep the holes open as water, oil and gas flow through it.

But moving the sand by truck is usually a long and potentially dangerous process, according to CEO John Turner. He said massive trucks moving sand and other industrial goods are a common site in the oil-rich Permian Basin and pose a danger to other drivers.

“Pretty early on, the delivery of sand via truck was not only inefficient, it was dangerous,” he said.

The conveyor belt, with a freight capacity of 13 tons, was designed to bypass and trudge alongside traffic.

Innovation isn't new to the oil and gas industry, nor is the idea to use a conveyor belt to move materials around. Another conveyer belt believed to be the world’s longest conveyor — at 61 miles long — carries phosphorous from a mine in Western Sahara on the northwest coast of Africa, according to NASA Earth Observatory.

When moving sand by truck became a nuisance, an unprecedented and risky investment opportunity arose: constructing a $400 million machine to streamline the production of hydraulic fracturing. The company went public in March 2023, in part, to help pay for the conveyor belt and completed its first delivery in January, Turner said.

The sand sits in a tray-shaped pan with a lid that can be taken off at any point, but most of it gets offloaded into silos near the Texas and New Mexico border. Along its miles-long journey, the sand is sold and sent to fracking companies who move it by truck for the remainder of the trip.

Keeping the rollers on the belt aligned and making sure it runs smoothly are the biggest maintenance obstacles, according to Turner. The rollers are equipped with chips that signal when it's about to fail and need to be replaced. This helps prevent wear and tear and keep the machine running consistently, Turner said.

The belt cuts through a large oil patch where environmentalists have long raised concerns about the industry disturbing local habitats, including those of the sagebrush lizard, which was listed as an endangered species last year by the U.S. Fish and Wildlife Service.

“In addition to that, we know that the sand will expedite further drilling nearby,” said Luke Metzger, executive director of Environment Texas. “We could see more drilling than we otherwise would, which means more air pollution, more spills than we otherwise would.”

The Dune Express currently runs for about 12 to 14 hours a day at roughly half capacity but the company expects to it to be rolling along at all hours later this year.

In New Mexico, Lea County Commissioner Brad Weber said he hopes the belt alleviates traffic on a parallel highway where car crashes are frequent.

“I believe it’s going to make a very positive impact here,” he said.