Here's what you need yo know this week. Photo via Getty Images

Editor's note: It's a new week — start it strong with three quick things to know in Houston's energy transition ecosystem: Baker Hughes makes headlines for new hydrogen tech and grants, three people to know in energy, and more.

Who to know

Last week, EnergyCapital had three stories introducing you to key players within the energy transition:

  • Patrick Sullivan, president and of Hawaii-based Oceanit, explained the impact the company is having on the energy transition in Houston and beyond. Read more.
  • Ken Gilmartin, CEO of Wood, shared his company’s strategic mission for the future and their recent wins in the energy space that are driving the energy transition forward. Read more.
  • Tania Ortiz Mena was named president of Sempra Infrastructure, which is based in Houston. Read more.

What to attend

Here are two events not to miss this month. Photo via Getty Images

Put these upcoming events on your radar.

  • October 10-11 — SPRINT Robotics World Conference and Exhibition will show that many robots are in use and that the industry is accelerating and starting to scale. Learn more.
  • October 30-31 — Fuze is a must-attend event for executives, investors, and founders serious about solving the energy crisis and boosting company efficiency. Learn more.

Baker Hughes makes moves

Missed these storied about Baker Hughes? Photo courtesy of Baker Hughes

As you might have seen, Baker Hughes had two pieces of news last week.

Houston-based energy technology company Baker Hughes is rolling out two new products — pressure sensors for the hydrogen sector.

“Hydrogen plays a key role in the transition to a more sustainable, lower-emissions future but also poses challenges for infrastructure and equipment due to hydrogen embrittlement,” Gordon Docherty says. Read more.

Additionally, the Baker Hughes Foundation revealed details on a $75,000 grant to Houston Minority Supplier Development Council, or HMSDC, and a $100,000 grant to Washington, D.C.-based WEConnect International. HMSDC supports economic growth of minority-owned businesses, and WEConnect International is focused on women-owned companies. Read more.

Ken Gilmartin, CEO of Wood, joins HETI for a Q&A. Photo courtesy of HETI

Q&A: Houston engineering, consulting exec on designing a low-carbon future

the view from heti

Global engineering and consulting firm Wood is a pioneering force in the energy transition landscape.

The Houston Energy Transition Initiative recently sat down with Ken Gilmartin, CEO of Wood, to learn more about the company’s strategic mission for the future and their recent wins in the energy space that are driving the energy transition forward.

Houston Energy Transition Institute: Can you give our audience an overview of Wood and your mission to help reach net-zero?

Ken Gilmartin: We are a company of 36,000 remarkable people delivering some of the world’s most complex and transformative projects for our clients. As an engineering and consulting firm, we’re passionate about delivering net-zero solutions across two key markets, energy and materials.

Our passion derives from our people whose curiosity, skills and expertise have always driven the advancement and transformation of industry, pushing the envelope of what is possible. Sustainability is core to us as engineers and consultants and we take our responsibility in delivering the net-zero solutions critical to the world, very seriously.

We live in the future – designing and delivering facilities today that will operate more effectively, efficiently and sustainably tomorrow by integrating technologies to decarbonize and digital solutions that derive data to ensure this.

HETI: Wood was recently selected as an EPCM partner by Canadian battery materials company Euro Manganese Inc. with a mission to design Europe’s largest high-purity manganese processing facility. How critical is this project to the energy transition?  

KG: Hugely critical. As a mineral used in most lithium-ion batteries, it is core to the electric vehicle industry and therefore, the energy transition.

This project is the only significant source of manganese in the European Union today. With mineral reserves of 27 million tonnes, this project could provide up to 20 percent of the projected European demand for high-purity manganese, which will provide battery supply chains with critical raw materials to support the shift to a circular, low carbon economy.

This innovative project holds real significance for Wood as we continue to lead the development of critical mineral projects — with specialist expertise in hydrometallurgy and a passion for designing sustainable energy and materials infrastructure.

HETI: Closer to HETI’s home, what have you got going on in the region in the energy transition space?

KG: As a result of the Inflation Reduction Act and other key government policies and incentives, we’re seeing a significant uptick in the number of decarbonization projects, particularly hydrogen and carbon capture storage (CCS).

Wood is at the forefront of advising our clients on funding opportunities and taking the lead on the development of Department of Energy applications to ensure critical net zero projects go from paper to production. We see ourselves as a collaborator across the entire process, from funding and feasibility to engineering, design, start-up and operations.

Ten years ago, we delivered Century Plant in West Texas, which at the time, was the largest CO2 plant in the world. Our involvement in needle-moving projects in the region hasn’t stopped.

We have near 4000 people in Texas advising and delivering some of the most innovative energy transition projects, including work on the critical CCS and hydrogen hub program proposed right here in Houston and across the U.S. We’re also supporting our clients in the funding and application stages of their direct air capture projects; we’re meeting the demand for low-carbon fuel alternatives in the areas of hydrogen fuel-switching, electrofuels and biofuels; and we’re delivering e-methanol projects along the U.S. Gulf Coast that will target and abate maritime emissions. You name it, we’re doing it.

As the DOE looks to award further funding rounds for hydrogen, carbon capture and industrial decarbonization projects in 2024, we’re excited about the tremendous opportunities this presents for the region and the role we can play in Houston’s future as the world’s energy capital.

Learn more about Wood, and their work in the energy transition.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”