newly appointed

Houston-based subsidiary co. focused on clean energy names new president

With 23 years within Sempra's family of companies, Tania Ortiz Mena has been named president of Sempra Infrastructure, which is based in Houston. Photo via Sempra

A Houston-based arm of Sempra that's dedicated to delivering clean energy alternatives has named a new leader within its organization.

This week, Sempra Infrastructure announced Tania Ortiz Mena as its president. The company, which is a subsidiary of San Diego, California-based Sempra (NYSE: SRE), works within clean power, energy networks, and LNG, as well as other net-zero solutions.

In her new role, Ortiz Mena will lead all three of these business lines.

"Tania's extensive experience and exemplary leadership will continue to drive our growth strategy and commitment to facilitate a responsible energy transition, guided by our vision of delivering energy for a better world," Justin Bird, CEO of Sempra Infrastructure, says in a news release. "I am confident that Tania's vast expertise will continue to position Sempra Infrastructure as a champion of innovative energy solutions."

Before this promotion, Ortiz Mena served as group president of clean power and energy networks at the company. She has worked within Sempra's family of companies for 23 years and previously served as CEO of IEnova. Prior to that, she was IEova's chief development officer and vice president of development and external affairs.

In addition to her roles at Sempra, Ortiz Mena serves as independent board member of the Mexican Stock Exchange and as president of its Corporate Practices Committee. Also a member of the US-Mexico CEO Dialogue and adviser for the Mexican Natural Gas Association, she serves on the board of directors of several organizations including the American Chamber of Commerce Mexico, the Mexican Natural Gas Association and the Mexican Council on Foreign Relations.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News