The first Alto EVs have hit the road in Houston. Photo via Alto

Your next Alto ride might be electric. The Dallas-based car service has rolled out electric vehicles in Houston.

Alto, founded in Dallas in 2018 and launched in Houston in 2020, elevates ridesharing with its own fleet of company-owned, clearly branded SUVs driven by its staff of drivers. The company previously announced its plans to evolve its fleet into being completely electric, and the first EVs have hit the road, according to a company email.

"Our EV additions to the Houston fleet mark an important moment in our commitment to significantly reduce Alto's environmental impact," reads the email sent on September 5.

The new cars offer similar features to its existing fleet, including legroom, phone chargers, water bottles for riders, and more. Plus, the new cars — Kia EV9 — boast a quieter ride.

Alto has consistently grown in its Texas markets — which include Houston and Dallas — over the years, including expanding into Houston's suburbs.

Will Coleman, CEO of Alto, previously wrote in a guest column for InnovationMap that his priorities for starting the company included safety — but also sustainability. For years, Alto has been expressing interest in introducing EVs, with plans of having a completely electric fleet.

"This EV vision is one example of how a rideshare company can build a better and more accountable industry, and these steps also give Houstonians a more responsible and sustainable transportation solution," Coleman writes.

The Austin, Texas, company said Tuesday that it sold 443,956 vehicles from April through June, down 4.8 percent from 466,140 sold the same period a year ago. Photo courtesy of Tesla

Tesla sales fall for second straight quarter despite price cuts, but decline not as bad as expected

by the numbers

Tesla's global sales fell for the second straight quarter despite price cuts and low-interest financing offers, another sign of weakening demand for the company's products and electric vehicles overall.

The Austin, Texas, company said Tuesday that it sold 443,956 vehicles from April through June, down 4.8 percent from 466,140 sold the same period a year ago. But the sales were better than the 436,000 that analysts had expected.

The better-than-expected deliveries pushed Tesla's stock up 10 percent Tuesday. The stock is down about 7 percent so far this year, but it has nearly erased larger losses from prior months. Tesla shares had been down more than 40 percent earlier in the year, but are up more than 60 percent since hitting a 52-week low in April.

Demand for EVs worldwide is slowing, but they're still growing for most automakers. Tesla, with an aging model lineup and relatively high average selling prices, has struggled more than other manufacturers. Still it retained the title of the world's top-selling electric vehicle maker.

For the first half of the year, Tesla sold 830,766 electric vehicles worldwide, handily beating China's BYD, which sold 726,153 EVs.

Tesla also sold over 33,000 more vehicles during the second quarter than it produced, which should reduce the company's inventory on hand at its stores.

Tesla's sales decline comes as competition is increasing from legacy and startup automakers, which are trying to nibble away at the company's market share. Most other automakers will report U.S. sales figures later Tuesday.

Tesla gave no explanation for the sales decline, which is a harbinger of what to expect when it posts second-quarter earnings on July 23.

Nearly all of Tesla’s sales came from the smaller and less-expensive Models 3 and Y, with the company selling only 21,551 of its more expensive models that include X and S, as well as the new Cybertruck.

The sales decline came despite Tesla knocking $2,000 off the prices of three of its five models in the United States in April. The company cut the prices of the Model Y, Tesla’s most popular model and the top-selling electric vehicle in the U.S., and also of the Models X and S.

The April cuts reduced the starting price for a Model Y to $42,990 and to $72,990 for a Model S and $77,990 for a Model X. Last week, Tesla lopped $2,340 off the $38,990 base price of some newly revamped Model 3s that were in the inventory shipped to its stores.

In addition, Tesla in May offered 0.99 percent financing for up to six years on the Model Y. In June, it offered interest as low as 1.99 percent for three years on the rear-wheel-drive Model 3. Typical new-vehicle interest rates average just over 7 percent, according to Edmunds.com.

Also during the quarter, Tesla knocked roughly a third off the price of its “Full Self Driving” system — which can’t drive itself and so drivers must remain alert and be ready to intervene — to $8,000 from $12,000, according to the company website.

Jessica Caldwell, head of insights for Edmunds.com, said Tesla is having trouble in a market where most early adopters already have EVs, and mainstream buyers are more skeptical that electric cars can meet their needs.

Tesla's “haphazard” price cuts don't work as well as they once did because consumers now expect them, she said. “We’ve seen the automaker exhaust its bag of tricks by lowering prices and increasing incentives to spur demand without much success in the U.S. market,” Caldwell said.

Also, Tesla's aging model lineup doesn’t look much different than it did years ago she said. And with price cuts, used Tesla prices tumbled. Anyone wanting a Tesla can get a far better deal buying a used one, Caldwell said.

Caldwell doesn’t see any big catalyst this year that would boost Tesla sales unless gasoline prices spike, and she said Musk's shift to the right since taking over Twitter has hurt the brand's image.

Wedbush analyst Dan Ives wrote in a note to investors Tuesday that second-quarter sales were a “huge comeback performance” for Tesla. “In a nutshell, the worst is in the rearview mirror for Tesla,” he wrote. The company, he wrote, cut 10 percent to 15 percent of its workforce to reduce costs and preserve profitability. “It appears better days are now ahead as the growth story returns,” Ives wrote.

In its letter to investors in January, Tesla predicted “notably lower” sales growth this year. The letter said Tesla is between two big growth waves, one from global expansion of the Models 3 and Y, and a second coming from the Model 2, a new, smaller and less expensive vehicle with an unknown release date.

Tesla is scheduled to unveil a purpose built robotaxi at an event on Aug. 8.

Sysco recently took delivery of 10 heavy-duty, electric-powered trucks for its Houston operations. Photo via LinkedIn

Sysco introduces new fleet of electric trucks at Houston operations

ev moves

Houston-based food distributor Sysco is helping fuel the future of electric vehicles.

Sysco recently took delivery of 10 heavy-duty, electric-powered trucks for its Houston operations. With this delivery, Sysco now operates nearly 120 electric vehicles (EVs) around the world.

In 2023, Sysco unveiled its first EV hub, which is in Riverside, California. The hub will eventually feature:

  • 40 electric-powered refrigerated trailers
  • 40 electric-powered semi-trucks
  • 40 charging stations

The hub also will include 4 megawatt-hours of battery storage and 1.4 additional megawatts of solar power generation.

Aside from Houston and Riverside, Sysco uses EVs in Baltimore; Boston; Baltimore; Denver; Long Island, New York; Los Angeles; and Fremont, California. Its EV fleet extends to Canada, Sweden, and the United Kingdom.

Sysco announced in 2021 that it planned to operate nearly 800 electric-powered semi-trucks by 2026. Houston Freightliner is a partner in this initiative.

In all, Sysco aims to electrify 35 percent of its U.S. tractor fleet.

Around the world, EVs are contributing to Sysco’s goal of reducing direct emissions by 27.5 percent by 2030.

“We are proud of our progress to scale our electric truck fleet and continue our journey to meet our climate goal,” Neil Russell, chief administrative officer at Sysco, says in a news release. “This work is important to many of our customers who have also set goals to reduce emissions.”

It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin. Photo via exxonmobil.com

ExxonMobil revs up EV pilot in Permian Basin

seeing green

ExxonMobil has upgraded its Permian Basin fleet of trucks with sustainability in mind.

The Houston-headquartered company announced a new pilot program last week, rolling out 10 new all-electric pickup trucks at its Cowboy Central Delivery Point in southeast New Mexico. It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin.

“We expect these EV trucks will require less maintenance, which will help reduce cost, while also contributing to our plan to achieve net zero Scope 1 and 2 emissions in our Permian operations by 2030," Kartik Garg, ExxonMobil's New Mexico production manager, says in a news release.

ExxonMobil has already deployed EV trucks at its facilities in Baytown, Beaumont, and Baton Rouge, but the Permian Basin, which accounts for about half of ExxonMobil's total U.S. oil production, is a larger site. The company reports that "a typical vehicle there can log 30,000 miles a year."

The EV rollout comes after the company announced last year that it plans to be a major supplier of lithium for EV battery technology.

At the end of last year, ExxonMobil increased its financial commitment to implementing more sustainable solutions. The company reported that it is pursuing more than $20 billion of lower-emissions opportunities through 2027.

Cowboys and the EVs of the Permian Basin | ExxonMobilyoutu.be

A new list from EV Charger Reviews puts Texas in the No. 2 position among the worst states for owning an EV. Photo via Getty Images

Texas ranked as among the worst states for EV drivers

yikes

You’d think that producing tens of thousands of Teslas might help drive up Texas’ standing among the best states for owning an electric vehicle. To the contrary, Texas ranks among the worst states to be an EV owner.

A new list from EV Charger Reviews puts Texas in the No. 2 position among the worst states for owning an EV. Washington leads the pack of the worst EV states. Topping the list of the best states for EV owners is Maine, followed by Colorado and Vermont.

The ranking judged each state on these factors:

  • Number of registered EVs
  • Number of EVs per charging port
  • Ratio of one square mile per charging port
  • Cost of electricity
  • Annual cost savings for EV owners
  • Number of EVs per service center
  • EV tax credits

“Texas has cheaper electricity but a bad ratio of EVs registered to charging ports and service centers. The annual savings on gas money is only about $1,000, and there are no tax incentives,” says EV Charger Reviews.

Texas’ ranking stands in contrast to the presence in Austin of Tesla’s headquarters and a Tesla factory. The more than 10 million-square-foot, 25,000-acre factory serves as the U.S. manufacturing hub for Tesla’s electric-powered Model Y car and Cybertruck.

While thousands of Texans are driving Teslas and other EVs, they’re definitely in the minority.

Survey findings released in November 2023 by the University of Houston and Texas Southern University showed that only five percent of Texas motorists who were questioned drove an electric-powered car, truck, or SUV.

Nearly 60 percent of those who didn’t drive EVs said they wouldn’t consider buying one. Almost half (46 percent) cited the lack of charging stations as their chief reason for not wanting to own an EV.

“With such a small percentage of Texans currently owning electric vehicles, it looks like Texans will hold tight to their gas engines for the foreseeable future. Government incentives … have yet to make a difference among the state’s vehicle buyers,” according to a UH news release about the survey.

“But as charging stations grow in number, costs of operation decrease and — most important, the technology allows longer driving ranges — perhaps electric vehicles will start to earn their place in the garages of Texans.”

A Texas law that took effect in 2023 requires an EV owner to pay an extra $200 fee when they renew their vehicle registration or an extra $400 fee for their initial two-year registration.

While Houston isn't known as the coldest of climates, you still might want to review this myth-busting guest column. Photo via Pexels

Guest column: Cold weather and electric vehicles — separating fact from fiction

EVs in winter

Winter range loss is fueling this season’s heated debate around the viability of electric vehicles, but some important context is needed. Gasoline cars, just like their electric counterparts, lose a significant amount of range in cold weather too.

According to the Department of Energy, the average internal combustion engine’s fuel economy is 15 percent lower at 20° Fahrenheit than it would be at 77° Fahrenheit, and can drop as much as 24 percent for short drives.

As the world grapples with the implications of climate change and shifts toward sustainable technologies, it's important to put the pros and cons of EVs and traditional gas vehicles in perspective. And while Houston isn't known as the coldest of climates, you still might want to review this information.

The Semantics of Energy Consumption Hide the Real Issue: Cost

First, let's talk about the language. When discussing gas vehicles in cold climates, the conversation often centers around "fuel efficiency." It sounds less threatening, doesn't it? But in reality, this is just a euphemism for range loss, something for which EVs are frequently criticized.

Why does that matter? Because for most drivers who travel less than 40 miles a day, what range loss really means is higher fueling costs. When a gas vehicle loses range, it costs a lot more than the same range loss in an EV. For example, at $3.50 a gallon, a car that gets 30 MPG in warm weather and costs $46.67 to go 400 miles suddenly costs $8.24 more to drive the same distance. By contrast, an EV plugging in at $0.13 per kWh usually costs $13 to go 400 miles and bumps up to a piddly $16.25 even if it loses 20 percent efficiency when the temperature drops.

Some EV models lose 40 percent in extreme cold. OK, tack on another $3. That still leaves almost $30 in the driver’s pocket. Over the course of a year, those savings pile up.

Let’s Call It What It Is: Fear Mongering

Any seismic shift in technology comes with consumer hesitancy and media skepticism. Remember when everyone was afraid to stand in front of microwaves and thought the waves would make the food unsafe to eat? Or how, just a decade or so back everyone was talking about how cell phones could spontaneously explode?

Fear of new technology is a natural psychological response and to be expected. But it takes the media machine to turn consumer hesitation into a frenzy. Any way you slice it, 2023 was one big platform for expressing fears around EVs. Headline-grabbing tales of EV woes often lacked context or understanding of the technology. In a highly partisan landscape where EVs have been dubbed liberal leftist technology, what should be seen as a miraculous pro-American, pro-clean-air, pro-energy independence, pro-cost saving advancement is getting a beating in the press. In this environment, every bit of “bad EV news” spirals out into an echo-chamber of confirmation bias.

For example, Tesla’s recent software update was hyped as a 2 million vehicle “recall” even though the software was updated over the air without a single car needing to leave the driveway. Hertz's recent decision to reduce its Tesla fleet was seen by many as a referendum on the cars’ quality but was actually a decision based on Hertz’s miscalculations around repair costs and a mismatch in their projections of consumer demand for EV rentals.

While the cost of repairs might be higher, maintenance and fuel costs are still much lower than gas vehicles. EVs are better daily-use cars than rentals because while our country’s public charging infrastructure is still lagging, home charging is a huge benefit of EV ownership. Instead, the Hertz move and the negative coverage are further spooking the public.

The Truth About EVs

Despite the challenges, it's crucial to acknowledge the environmental advantages of EVs. For instance, EVs produce zero direct emissions, which significantly reduces air pollution and greenhouse gasses. According to the U.S. Environmental Protection Agency, EVs are far more energy efficient than gas-powered cars, converting more than 77 percent of electrical energy from the grid to power, compared to 12-30 percent for gasoline vehicles.

This efficiency translates to a cleaner, more sustainable mode of transportation. And stories of EVs stranded in Chicago aside, generally they perform well in cold weather, as clearly demonstrated in Norway. In Norway, the average temperature hovers a solid 10 degrees lower than in the U.S. Yet 93 percent of new cars sold there are electric. The first-ever drive from the north to the south pole was also completed by an electric vehicle. The success story of EVs in Norway and demonstration projects in harsh winter climates serve as a powerful counterargument to the notion that EVs are ineffective in cold weather.

So where does this leave us? The discourse around EVs and gasoline vehicles in cold weather needs a more balanced and factual approach. The range loss in gasoline vehicles is a significant issue that mirrors the challenges faced by EVs. By acknowledging this and understanding the broader context, we can have a more informed and equitable discussion about the future of automotive technology and its impact on our environment.

---

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.

Houston microgrid company names new CEO

new hire

Houston-based electric microgrid company Enchanted Rock has named a new CEO.

John Carrington has assumed the role after serving as Enchanted Rock's executive chairman since June, the company announced earlier this month.

Carrington most recently was CEO of Houston-based Stem, which offers AI-enabled software and services designed for setting up and operating clean energy facilities. He stepped down as Stem’s CEO in September 2024. Stem, which was founded in 2006 and went public under Carrington's leadership in 2021, was previously based in San Francisco.

Carrington has also held senior leadership roles at Miasolé, First Solar and GE.

Corey Amthor has served as acting CEO of Enchanted Rock since June. He succeeded Enchanted Rock founder Thomas McAndrew in the role, with McAndrew staying on with the company as a strategic advisor and board member. With the hiring of Carrington, Amthor has returned to his role as president. According to the company, Amthor and Carrington will "partner to drive the company’s next phase of growth."

“I’m proud to join a leadership team known for technical excellence and execution, and with our company-wide commitment to innovation, we are well positioned to navigate this moment of unprecedented demand and advance our mission alongside our customers nationwide,” Carrington said in the news release. “Enchanted Rock’s technology platform delivers resilient, clean and scalable ultra-low-emissions onsite power that solves some of the most urgent challenges facing our country today. I’m energized by the strong momentum and growing market demand for our solutions, and we remain committed to providing data centers and other critical sectors with the reliable power essential to their operations.”

This summer, Enchanted Rock also announced that Ian Blakely would reassume the role of CFO at the company. He previously served as chief strategy officer. Paul Froutan, Enchanted Rock's former CTO, was also named COO last year.