The University of Houston has joined the Energy Storage Research Alliance, one of two DOE-backed energy innovation hubs. Photo via Getty Images

The University of Houston was selected for a new energy storage initiative from the United States Department of Energy.

UH is part of the Energy Storage Research Alliance (ESRA), which is one of the two energy innovation hubs that the DOE is creating with $125 million. The DOE will provide up to $62.5 million in ESRA funding over a span of five years.

“To fuel innovation and cultivate a sustainable and equitable energy future, all universities, government entities, industry and community partners have to work together,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “No one person or entity can achieve all this by themselves. As the Energy University and a Carnegie-designated Tier One research university, located in Houston — a center of diverse talent and experience from across the energy industry — UH has a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale.

The hubs will attempt to address battery challenges and encourage next-generation innovation, which include safety, high-energy density and long-duration batteries. The batteries will be made from inexpensive, abundant materials, per the release.

The work that will be done at ESRA and other hubs can optimize renewable energy usage, reduce emissions, enhance grid reliability, and assist in growing electric transportation, and other clean energy solutions.

ESRA will bring in 50 researchers from three national laboratories and 12 other universities, including UH. The deputy lead of the soft matter scientific thrust and the principal investigator for UH’s portion of the project will be Yan Yao. Yao is the Hugh Roy and Lillie Cranz Cullen Distinguished Professor at the UH Cullen College of Engineering and principal investigator at the Texas Center for Superconductivity.

UH professor Yan Yao will lead the school's participation in the program. Photo via UH.edu

ESRA will focus on three interconnected scientific thrusts and how they work together: liquids, soft matter, and condensed matter phases. Yao and his team have created next-generation batteries using low-cost organic materials. The team previously used quinones that can be synthesized from plants and food like soybeans to increase energy density, electrochemical stability and safety in the cathode. Yao’s team were the first to make solid-state sodium batteries by using multi-electron conformal organic cathodes. The cathodes had a demonstrated record of recharging stability of 500 charging cycles.

Robert A. Welch Assistant Professor of electrical and computer engineering at UH Pieremanuele Canepa, will serve as co-PI. Both will investigate phase transitions in multi-electron redox materials and conformable cathodes to enable solid-state batteries by “marrying Yao’s experimental lab work with Canepa’s expertise in computational material science,” according to the release.

Joe Powell, founding director of the UH Energy Transition Institute and a professor in the Department of Chemical and Biomolecular Engineering, will create a community benefit plan and develop an energy equity course.

“New energy infrastructure and systems can have benefits and burdens for communities,” Powell says in the release. “Understanding potential issues and partnering to develop best solutions is critical. We want everyone to be able to participate in the new energy economy and benefit from clean energy solutions.”

This project will be led by Argonne National Laboratory and co-led by Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory.

“This is a once in a lifetime opportunity,” adds Yao. “To collaborate with world-class experts to understand and develop new science and make discoveries that will lead to the next generation of batteries and energy storage concepts, and potentially game changing devices is exciting. It’s also a great opportunity for our students to learn from and work with top scientists in the country and be part of cutting-edge research.”

The DOE program allows graduate students to work on research projects that address national and international energy, environmental, and nuclear challenges. Photo via UH.edu

Houston students selected for prestigious DOE program

rising stars

Three rising stars in the energy sector who are graduate students at the University of Houston have been chosen for a prestigious U.S. Department of Energy research program.

UH doctoral candidates Caleb Broodo, Leonard Jiang, and Farzana Likhi, are among 86 students from 31 states who were selected for the Office of Science Graduate Student Research program, which provides training at Department of Energy (DOE) labs.

“This recognition is a testament to their hard work and dedication to pushing the boundaries of science, and to our commitment to fostering excellence in research and innovation,” Sarah Larsen, vice provost and dean of the UH’s graduate school, says in a news release.

The DOE program allows graduate students to work on research projects that address national and international energy, environmental, and nuclear challenges.

The program “is a unique opportunity for graduate students to complete their Ph.D. training with teams of world-class experts aiming to answer some of the most challenging problems in fundamental science,” says Harriet Kung, acting director of DOE’s Office of Science. “Gaining access to cutting-edge tools for scientific discovery at DOE national laboratories will be instrumental in preparing the next generation of scientific leaders.”

Here’s a rundown of the UH trio’s involvement in the DOE program:

  • Broodo, a second-year Ph.D. candidate whose research focuses on heavy ion nuclear physics, will work at Brookhaven National Laboratory in New York.
  • Jiang, a third-year Ph.D. candidate in materials science and engineering, will head to Argonne National Laboratory in Illinois to research electrochemistry.
  • Likhi, a fourth-year Ph.D. candidate in the materials science and engineering program, will conduct research on microelectronics at Oak Ridge Laboratory in Tennessee.
These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. Photo via UH.edu

3 top DOE researchers take professor positions at University of Houston

new hires

Three top researchers at the U.S. Department of Energy’s Argonne National Laboratory have accepted joint appointments at the University of Houston.

“This strategic collaboration leverages the combined strengths of Argonne and the [university] to further critical research efforts, public-private partnerships, and educational opportunities for students in the energy transition and lead to transformational advancement of commercial scale energy industries,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release.

These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. The agreement seeks to accelerate decarbonization efforts in the Houston area.

The three scientists appointed to positions are UH are:

  • Zach Hood, whose appointment is in the Department of Electrical and Computer Engineering at the UH Cullen College of Engineering. He’ll be hosted by Yan Yao, a UH professor who is principal investigator at the Texas Center for Superconductivity.
  • Jianlin Li, whose appointment also is in the Department of Electrical and Computer Engineering. He plans to establish a dry room facility at UH and conduct research on energy storage technologies, electrode processing, and cell manufacturing.
  • Michael Wang, the inaugural Distinguished Senior Scholar at UH’s Energy Transition Institute. His objectives include advancing research in decarbonizing the oil and gas sector through carbon management and transitioning to renewable energy sources. Wang will conduct seminars and present lectures in environmental sustainability, lifecycle, and techno-economic analysis of energy technologies, while helping Argonne tap into the university’s talent pool.

“With more than 30 years of experience, Dr. Wang brings critical tools and expertise to the UH Energy Transition Institute, which is dedicated to unlocking the transformative potential within three critical domains: hydrogen, carbon management, and circular plastics,” says Joe Powell, founding executive director of the Energy Transition Institute. “These areas not only present opportunities for reshaping the energy sector but also stand as pillars for societal sustainable development and decarbonization.”

The GHP and HETI announced that it has signed a memorandum of understanding with Argonne National Laboratory, a a federally-funded research and development facility in Illinois. Photo via Getty Images

HETI to partner with national research organization to promote energy transition innovation in Houston

team work

A new partnership between the Greater Houston Partnership and Argonne National Laboratory has been established to spur development of commercial-scale energy transition solutions.

The GHP and the Houston Energy Transition Initiative, or HETI, announced that it has signed a memorandum of understanding with Argonne National Laboratory, a federally-funded research and development facility in Illinois. The lab is owned by the United States Department of Energy and run by UChicago Argonne LLC of the University of Chicago.

“The U.S. Department of Energy’s national laboratories have long been the backbone of research, development, and demonstration for the energy sector," Bobby Tudor, CEO of Artemis Energy Partners and Chair of HETI, says in a news release. "The Partnership and HETI, working with our industry members, business community and top research and academic institutions, in collaboration with Argonne, will work across our energy innovation ecosystem to drive this critical effort for our region.”

The partnership, announced at HETI House at CERAWeek by S&P Global, is intended to provide resources and collaboration opportunities between Houston's energy innovation ecosystem — from corporates to startups — to "accelerate the translation, evaluation and pre-commercialization of breakthrough carbon reduction technologies," per the news release.

“A decarbonization center of excellence in Houston is the missing link in the region’s coordinated approach to advancing critical energy transition technologies needed to mitigate the risks associated with climate change, while also promoting economic growth and job creation for the region,” Tudor continues.

Established in 1946, Argonne works with universities, industry, and other national laboratories on large, collaborative projects that are expected to make a big impact on the energy transition.

“Partnerships are essential to realizing net zero goals,” Argonne Director Paul Kearns adds. “We are pleased to extend DOE national laboratory expertise and work with HETI to focus the region’s considerable energy and industrial assets, infrastructure, and talent on broad commercial deployment of needed technologies.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Mars Materials makes breakthrough in clean carbon fiber production

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

Tesla no longer world's biggest EV maker as sales drop for second year

EV Update

Tesla lost its crown as the world’s bestselling electric vehicle maker as a customer revolt over Elon Musk’s right-wing politics, expiring U.S. tax breaks for buyers and stiff overseas competition pushed sales down for a second year in a row.

Tesla said that it delivered 1.64 million vehicles in 2025, down 9% from a year earlier.

Chinese rival BYD, which sold 2.26 million vehicles last year, is now the biggest EV maker.

It's a stunning reversal for a car company whose rise once seemed unstoppable as it overtook traditional automakers with far more resources and helped make Musk the world's richest man. The sales drop came despite President Donald Trump's marketing effort early last year when he called a press conference to praise Musk as a “patriot” in front of Teslas lined up on the White House driveway, then announced he would be buying one, bucking presidential precedent to not endorse private company products.

For the fourth quarter, Tesla sales totaled 418,227, falling short of even the much reduced 440,000 target that analysts recently polled by FactSet had expected. Sales were hit hard by the expiration of a $7,500 tax credit for electric vehicle purchases that was phased out by the Trump administration at the end of September.

Tesla stock fell 2.6% to $438.07 on Friday.

Even with multiple issues buffeting the company, investors are betting that Tesla CEO Musk can deliver on his ambitions to make Tesla a leader in robotaxi services and get consumers to embrace humanoid robots that can perform basic tasks in homes and offices. Reflecting that optimism, the stock finished 2025 with a gain of approximately 11%.

The latest quarter was the first with sales of stripped-down versions of the Model Y and Model 3 that Musk unveiled in early October as part of an effort to revive sales. The new Model Y costs just under $40,000 while customers can buy the cheaper Model 3 for under $37,000. Those versions are expected to help Tesla compete with Chinese models in Europe and Asia.

For fourth-quarter earnings coming out in late January, analysts are expecting the company to post a 3% drop in sales and a nearly 40% drop in earnings per share, according to FactSet. Analysts expect the downward trend in sales and profits to eventually reverse itself as 2026 rolls along.

Musk said earlier last year that a “major rebound” in sales was underway, but investors were unruffled when that didn't pan out, choosing instead to focus on Musk's pivot to different parts of business. He has has been saying the future of the company lies with its driverless robotaxis service, its energy storage business and building robots for the home and factory — and much less with car sales.

Tesla started rolling out its robotaxi service in Austin in June, first with safety monitors in the cars to take over in case of trouble, then testing without them. The company hopes to roll out the service in several cities this year.

To do that successfully, it needs to take on rival Waymo, which has been operating autonomous taxis for years and has far more customers. It also will also have to contend with regulatory challenges. The company is under several federal safety investigations and other probes. In California, Tesla is at risk of temporarily losing its license to sell cars in the state after a judge there ruled it had misled customers about their safety.

“Regulatory is going to be a big issue,” said Wedbush Securities analyst Dan Ives, a well-known bull on the stock. “We're dealing with people's lives.”

Still, Ives said he expects Tesla's autonomous offerings will soon overcome any setbacks.

Musk has said he hopes software updates to his cars will enable hundreds of thousands of Tesla vehicles to operate autonomously with zero human intervention by the end of this year. The company is also planning to begin production of its AI-powered Cybercab with no steering wheel or pedals in 2026.

To keep Musk focused on the company, Tesla’s directors awarded Musk a potentially enormous new pay package that shareholders backed at the annual meeting in November.

Musk scored another huge windfall two weeks ago when the Delaware Supreme Court reversed a decision that deprived him of a $55 billion pay package that Tesla doled out in 2018.

Musk could become the world's first trillionaire later this year when he sells shares of his rocket company SpaceX to the public for the first time in what analysts expect would be a blockbuster initial public offering.

Renewables to play greater role in powering data centers, JLL says

Data analysis

Renewable energy is evolving as the primary energy source for large data centers, according to a new report.

The 2026 Global Data Center Outlook from commercial real estate services giant JLL points out that the pivot toward big data centers being powered by renewable energy stems from rising electricity costs and tightening carbon reduction requirements. In the data center sector, renewable energy, such as solar and wind power, is expected to outcompete fossil fuels on cost, the report says.

The JLL forecast carries implications for the Houston area’s tech and renewable energy sectors.

As of December, Texas was home to 413 data centers, second only to Virginia at 665, according to Visual Capitalist. Dozens more data centers are in the pipeline, with many of the new facilities slated for the Houston, Austin, Dallas-Fort Worth and San Antonio areas.

Amid Texas’ data center boom, several Houston companies are making inroads in the renewable energy market for data centers. For example, Houston-based low-carbon energy supplier ENGIE North America agreed last May to supply up to 300 megawatts of wind power for a Cipher Mining data center in West Texas.

The JLL report says power, not location or cost, will become the primary factor in selecting sites for data centers due to multi-year waits for grid connections.

“Energy infrastructure has emerged as the critical bottleneck constraining expansion [of data centers],” the report says. “Grid limitations now threaten to curtail growth trajectories, making behind-the-meter generation and integrated battery storage solutions essential pathways for sustainable scaling.”

Behind-the-meter generation refers to onsite energy systems such as microgrids, solar panels and solar battery storage. The report predicts global solar capacity will expand by roughly 100 gigawatts between 2026 and 2030 to more than 10,000 gigawatts.

“Solar will account for nearly half of global renewable energy capacity in 2026, and despite its intermittent properties, solar will remain a key source of sustainable energy for the data center sector for years to come,” the report says.

Thanks to cost and sustainability benefits, solar-plus-storage will become a key element of energy strategies for data centers by 2030, according to the report.

“While some of this energy harvesting will be colocated with data center facilities, much of the energy infrastructure will be installed offsite,” the report says.

Other findings of the report include:

  • AI could represent half of data center workloads by 2030, up from a quarter in 2025.
  • The current five-year “supercycle” of data center infrastructure development may result in global investments of up to $3 trillion by 2030.
  • Nearly 100 gigawatts worth of new data centers will be added between 2026 and 2030, doubling global capacity.

“We’re witnessing the most significant transformation in data center infrastructure since the original cloud migration,” says Matt Landek, who leads JLL’s data center division. “The sheer scale of demand is extraordinary.”

Hyperscalers, which operate massive data centers, are allocating $1 trillion for data center spending between 2024 and 2026, Landek notes, “while supply constraints and four-year grid connection delays are creating a perfect storm that’s fundamentally reshaping how we approach development, energy sourcing, and market strategy.”