The University of Houston has joined the Energy Storage Research Alliance, one of two DOE-backed energy innovation hubs. Photo via Getty Images

The University of Houston was selected for a new energy storage initiative from the United States Department of Energy.

UH is part of the Energy Storage Research Alliance (ESRA), which is one of the two energy innovation hubs that the DOE is creating with $125 million. The DOE will provide up to $62.5 million in ESRA funding over a span of five years.

“To fuel innovation and cultivate a sustainable and equitable energy future, all universities, government entities, industry and community partners have to work together,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “No one person or entity can achieve all this by themselves. As the Energy University and a Carnegie-designated Tier One research university, located in Houston — a center of diverse talent and experience from across the energy industry — UH has a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale.

The hubs will attempt to address battery challenges and encourage next-generation innovation, which include safety, high-energy density and long-duration batteries. The batteries will be made from inexpensive, abundant materials, per the release.

The work that will be done at ESRA and other hubs can optimize renewable energy usage, reduce emissions, enhance grid reliability, and assist in growing electric transportation, and other clean energy solutions.

ESRA will bring in 50 researchers from three national laboratories and 12 other universities, including UH. The deputy lead of the soft matter scientific thrust and the principal investigator for UH’s portion of the project will be Yan Yao. Yao is the Hugh Roy and Lillie Cranz Cullen Distinguished Professor at the UH Cullen College of Engineering and principal investigator at the Texas Center for Superconductivity.

UH professor Yan Yao will lead the school's participation in the program. Photo via UH.edu

ESRA will focus on three interconnected scientific thrusts and how they work together: liquids, soft matter, and condensed matter phases. Yao and his team have created next-generation batteries using low-cost organic materials. The team previously used quinones that can be synthesized from plants and food like soybeans to increase energy density, electrochemical stability and safety in the cathode. Yao’s team were the first to make solid-state sodium batteries by using multi-electron conformal organic cathodes. The cathodes had a demonstrated record of recharging stability of 500 charging cycles.

Robert A. Welch Assistant Professor of electrical and computer engineering at UH Pieremanuele Canepa, will serve as co-PI. Both will investigate phase transitions in multi-electron redox materials and conformable cathodes to enable solid-state batteries by “marrying Yao’s experimental lab work with Canepa’s expertise in computational material science,” according to the release.

Joe Powell, founding director of the UH Energy Transition Institute and a professor in the Department of Chemical and Biomolecular Engineering, will create a community benefit plan and develop an energy equity course.

“New energy infrastructure and systems can have benefits and burdens for communities,” Powell says in the release. “Understanding potential issues and partnering to develop best solutions is critical. We want everyone to be able to participate in the new energy economy and benefit from clean energy solutions.”

This project will be led by Argonne National Laboratory and co-led by Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory.

“This is a once in a lifetime opportunity,” adds Yao. “To collaborate with world-class experts to understand and develop new science and make discoveries that will lead to the next generation of batteries and energy storage concepts, and potentially game changing devices is exciting. It’s also a great opportunity for our students to learn from and work with top scientists in the country and be part of cutting-edge research.”

The DOE program allows graduate students to work on research projects that address national and international energy, environmental, and nuclear challenges. Photo via UH.edu

Houston students selected for prestigious DOE program

rising stars

Three rising stars in the energy sector who are graduate students at the University of Houston have been chosen for a prestigious U.S. Department of Energy research program.

UH doctoral candidates Caleb Broodo, Leonard Jiang, and Farzana Likhi, are among 86 students from 31 states who were selected for the Office of Science Graduate Student Research program, which provides training at Department of Energy (DOE) labs.

“This recognition is a testament to their hard work and dedication to pushing the boundaries of science, and to our commitment to fostering excellence in research and innovation,” Sarah Larsen, vice provost and dean of the UH’s graduate school, says in a news release.

The DOE program allows graduate students to work on research projects that address national and international energy, environmental, and nuclear challenges.

The program “is a unique opportunity for graduate students to complete their Ph.D. training with teams of world-class experts aiming to answer some of the most challenging problems in fundamental science,” says Harriet Kung, acting director of DOE’s Office of Science. “Gaining access to cutting-edge tools for scientific discovery at DOE national laboratories will be instrumental in preparing the next generation of scientific leaders.”

Here’s a rundown of the UH trio’s involvement in the DOE program:

  • Broodo, a second-year Ph.D. candidate whose research focuses on heavy ion nuclear physics, will work at Brookhaven National Laboratory in New York.
  • Jiang, a third-year Ph.D. candidate in materials science and engineering, will head to Argonne National Laboratory in Illinois to research electrochemistry.
  • Likhi, a fourth-year Ph.D. candidate in the materials science and engineering program, will conduct research on microelectronics at Oak Ridge Laboratory in Tennessee.
These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. Photo via UH.edu

3 top DOE researchers take professor positions at University of Houston

new hires

Three top researchers at the U.S. Department of Energy’s Argonne National Laboratory have accepted joint appointments at the University of Houston.

“This strategic collaboration leverages the combined strengths of Argonne and the [university] to further critical research efforts, public-private partnerships, and educational opportunities for students in the energy transition and lead to transformational advancement of commercial scale energy industries,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release.

These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. The agreement seeks to accelerate decarbonization efforts in the Houston area.

The three scientists appointed to positions are UH are:

  • Zach Hood, whose appointment is in the Department of Electrical and Computer Engineering at the UH Cullen College of Engineering. He’ll be hosted by Yan Yao, a UH professor who is principal investigator at the Texas Center for Superconductivity.
  • Jianlin Li, whose appointment also is in the Department of Electrical and Computer Engineering. He plans to establish a dry room facility at UH and conduct research on energy storage technologies, electrode processing, and cell manufacturing.
  • Michael Wang, the inaugural Distinguished Senior Scholar at UH’s Energy Transition Institute. His objectives include advancing research in decarbonizing the oil and gas sector through carbon management and transitioning to renewable energy sources. Wang will conduct seminars and present lectures in environmental sustainability, lifecycle, and techno-economic analysis of energy technologies, while helping Argonne tap into the university’s talent pool.

“With more than 30 years of experience, Dr. Wang brings critical tools and expertise to the UH Energy Transition Institute, which is dedicated to unlocking the transformative potential within three critical domains: hydrogen, carbon management, and circular plastics,” says Joe Powell, founding executive director of the Energy Transition Institute. “These areas not only present opportunities for reshaping the energy sector but also stand as pillars for societal sustainable development and decarbonization.”

The GHP and HETI announced that it has signed a memorandum of understanding with Argonne National Laboratory, a a federally-funded research and development facility in Illinois. Photo via Getty Images

HETI to partner with national research organization to promote energy transition innovation in Houston

team work

A new partnership between the Greater Houston Partnership and Argonne National Laboratory has been established to spur development of commercial-scale energy transition solutions.

The GHP and the Houston Energy Transition Initiative, or HETI, announced that it has signed a memorandum of understanding with Argonne National Laboratory, a federally-funded research and development facility in Illinois. The lab is owned by the United States Department of Energy and run by UChicago Argonne LLC of the University of Chicago.

“The U.S. Department of Energy’s national laboratories have long been the backbone of research, development, and demonstration for the energy sector," Bobby Tudor, CEO of Artemis Energy Partners and Chair of HETI, says in a news release. "The Partnership and HETI, working with our industry members, business community and top research and academic institutions, in collaboration with Argonne, will work across our energy innovation ecosystem to drive this critical effort for our region.”

The partnership, announced at HETI House at CERAWeek by S&P Global, is intended to provide resources and collaboration opportunities between Houston's energy innovation ecosystem — from corporates to startups — to "accelerate the translation, evaluation and pre-commercialization of breakthrough carbon reduction technologies," per the news release.

“A decarbonization center of excellence in Houston is the missing link in the region’s coordinated approach to advancing critical energy transition technologies needed to mitigate the risks associated with climate change, while also promoting economic growth and job creation for the region,” Tudor continues.

Established in 1946, Argonne works with universities, industry, and other national laboratories on large, collaborative projects that are expected to make a big impact on the energy transition.

“Partnerships are essential to realizing net zero goals,” Argonne Director Paul Kearns adds. “We are pleased to extend DOE national laboratory expertise and work with HETI to focus the region’s considerable energy and industrial assets, infrastructure, and talent on broad commercial deployment of needed technologies.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report ranks Texas in the middle for sustainable development

room to improve

Texas appears in the middle of the pack in a new ranking of the best states for sustainable development.

SmileHub, a nonprofit that rates charities, examined 20 key metrics to create its list of the best states for sustainable development. Among the metrics it studied were the share of urban tree cover, green buildings per capita and clean energy jobs per capita. Once SmileHub crunched all the numbers, it put Texas in 24th place — one notch above average.

The United Nations defines sustainable development as “meeting present needs without compromising the chances of future generations to meet their needs.”

Here’s how Texas fared in several of SmileHub’s ranking categories:

  • No. 2 for water efficiency and sustainability
  • No. 7 for presence of wastewater reuse initiatives
  • No. 18 for environmental protection charities per capita
  • No. 25 for green buildings per capita
  • No. 34 for clean energy jobs per capita
  • No. 34 for industrial toxins per square mile
  • No. 38 for share of tree cover in urban areas

California leads the SmileHub list, followed by Vermont, Massachusetts, Oregon and Maryland.

When it comes to water, a 2024 report commissioned by Texas 2036, a nonpartisan think tank, recommends that Texas invest $154 billion over the next 50 years in new water supply and infrastructure to support sustainable growth, according to the Greater Houston Partnership.

“The report underscores a stark reality: a comprehensive, sustainable funding strategy for water is necessary to keep Texas economically resilient and competitive,” the partnership says.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.