The University of Houston has joined the Energy Storage Research Alliance, one of two DOE-backed energy innovation hubs. Photo via Getty Images

The University of Houston was selected for a new energy storage initiative from the United States Department of Energy.

UH is part of the Energy Storage Research Alliance (ESRA), which is one of the two energy innovation hubs that the DOE is creating with $125 million. The DOE will provide up to $62.5 million in ESRA funding over a span of five years.

“To fuel innovation and cultivate a sustainable and equitable energy future, all universities, government entities, industry and community partners have to work together,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “No one person or entity can achieve all this by themselves. As the Energy University and a Carnegie-designated Tier One research university, located in Houston — a center of diverse talent and experience from across the energy industry — UH has a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale.

The hubs will attempt to address battery challenges and encourage next-generation innovation, which include safety, high-energy density and long-duration batteries. The batteries will be made from inexpensive, abundant materials, per the release.

The work that will be done at ESRA and other hubs can optimize renewable energy usage, reduce emissions, enhance grid reliability, and assist in growing electric transportation, and other clean energy solutions.

ESRA will bring in 50 researchers from three national laboratories and 12 other universities, including UH. The deputy lead of the soft matter scientific thrust and the principal investigator for UH’s portion of the project will be Yan Yao. Yao is the Hugh Roy and Lillie Cranz Cullen Distinguished Professor at the UH Cullen College of Engineering and principal investigator at the Texas Center for Superconductivity.

UH professor Yan Yao will lead the school's participation in the program. Photo via UH.edu

ESRA will focus on three interconnected scientific thrusts and how they work together: liquids, soft matter, and condensed matter phases. Yao and his team have created next-generation batteries using low-cost organic materials. The team previously used quinones that can be synthesized from plants and food like soybeans to increase energy density, electrochemical stability and safety in the cathode. Yao’s team were the first to make solid-state sodium batteries by using multi-electron conformal organic cathodes. The cathodes had a demonstrated record of recharging stability of 500 charging cycles.

Robert A. Welch Assistant Professor of electrical and computer engineering at UH Pieremanuele Canepa, will serve as co-PI. Both will investigate phase transitions in multi-electron redox materials and conformable cathodes to enable solid-state batteries by “marrying Yao’s experimental lab work with Canepa’s expertise in computational material science,” according to the release.

Joe Powell, founding director of the UH Energy Transition Institute and a professor in the Department of Chemical and Biomolecular Engineering, will create a community benefit plan and develop an energy equity course.

“New energy infrastructure and systems can have benefits and burdens for communities,” Powell says in the release. “Understanding potential issues and partnering to develop best solutions is critical. We want everyone to be able to participate in the new energy economy and benefit from clean energy solutions.”

This project will be led by Argonne National Laboratory and co-led by Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory.

“This is a once in a lifetime opportunity,” adds Yao. “To collaborate with world-class experts to understand and develop new science and make discoveries that will lead to the next generation of batteries and energy storage concepts, and potentially game changing devices is exciting. It’s also a great opportunity for our students to learn from and work with top scientists in the country and be part of cutting-edge research.”

The DOE program allows graduate students to work on research projects that address national and international energy, environmental, and nuclear challenges. Photo via UH.edu

Houston students selected for prestigious DOE program

rising stars

Three rising stars in the energy sector who are graduate students at the University of Houston have been chosen for a prestigious U.S. Department of Energy research program.

UH doctoral candidates Caleb Broodo, Leonard Jiang, and Farzana Likhi, are among 86 students from 31 states who were selected for the Office of Science Graduate Student Research program, which provides training at Department of Energy (DOE) labs.

“This recognition is a testament to their hard work and dedication to pushing the boundaries of science, and to our commitment to fostering excellence in research and innovation,” Sarah Larsen, vice provost and dean of the UH’s graduate school, says in a news release.

The DOE program allows graduate students to work on research projects that address national and international energy, environmental, and nuclear challenges.

The program “is a unique opportunity for graduate students to complete their Ph.D. training with teams of world-class experts aiming to answer some of the most challenging problems in fundamental science,” says Harriet Kung, acting director of DOE’s Office of Science. “Gaining access to cutting-edge tools for scientific discovery at DOE national laboratories will be instrumental in preparing the next generation of scientific leaders.”

Here’s a rundown of the UH trio’s involvement in the DOE program:

  • Broodo, a second-year Ph.D. candidate whose research focuses on heavy ion nuclear physics, will work at Brookhaven National Laboratory in New York.
  • Jiang, a third-year Ph.D. candidate in materials science and engineering, will head to Argonne National Laboratory in Illinois to research electrochemistry.
  • Likhi, a fourth-year Ph.D. candidate in the materials science and engineering program, will conduct research on microelectronics at Oak Ridge Laboratory in Tennessee.
These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. Photo via UH.edu

3 top DOE researchers take professor positions at University of Houston

new hires

Three top researchers at the U.S. Department of Energy’s Argonne National Laboratory have accepted joint appointments at the University of Houston.

“This strategic collaboration leverages the combined strengths of Argonne and the [university] to further critical research efforts, public-private partnerships, and educational opportunities for students in the energy transition and lead to transformational advancement of commercial scale energy industries,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release.

These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. The agreement seeks to accelerate decarbonization efforts in the Houston area.

The three scientists appointed to positions are UH are:

  • Zach Hood, whose appointment is in the Department of Electrical and Computer Engineering at the UH Cullen College of Engineering. He’ll be hosted by Yan Yao, a UH professor who is principal investigator at the Texas Center for Superconductivity.
  • Jianlin Li, whose appointment also is in the Department of Electrical and Computer Engineering. He plans to establish a dry room facility at UH and conduct research on energy storage technologies, electrode processing, and cell manufacturing.
  • Michael Wang, the inaugural Distinguished Senior Scholar at UH’s Energy Transition Institute. His objectives include advancing research in decarbonizing the oil and gas sector through carbon management and transitioning to renewable energy sources. Wang will conduct seminars and present lectures in environmental sustainability, lifecycle, and techno-economic analysis of energy technologies, while helping Argonne tap into the university’s talent pool.

“With more than 30 years of experience, Dr. Wang brings critical tools and expertise to the UH Energy Transition Institute, which is dedicated to unlocking the transformative potential within three critical domains: hydrogen, carbon management, and circular plastics,” says Joe Powell, founding executive director of the Energy Transition Institute. “These areas not only present opportunities for reshaping the energy sector but also stand as pillars for societal sustainable development and decarbonization.”

The GHP and HETI announced that it has signed a memorandum of understanding with Argonne National Laboratory, a a federally-funded research and development facility in Illinois. Photo via Getty Images

HETI to partner with national research organization to promote energy transition innovation in Houston

team work

A new partnership between the Greater Houston Partnership and Argonne National Laboratory has been established to spur development of commercial-scale energy transition solutions.

The GHP and the Houston Energy Transition Initiative, or HETI, announced that it has signed a memorandum of understanding with Argonne National Laboratory, a federally-funded research and development facility in Illinois. The lab is owned by the United States Department of Energy and run by UChicago Argonne LLC of the University of Chicago.

“The U.S. Department of Energy’s national laboratories have long been the backbone of research, development, and demonstration for the energy sector," Bobby Tudor, CEO of Artemis Energy Partners and Chair of HETI, says in a news release. "The Partnership and HETI, working with our industry members, business community and top research and academic institutions, in collaboration with Argonne, will work across our energy innovation ecosystem to drive this critical effort for our region.”

The partnership, announced at HETI House at CERAWeek by S&P Global, is intended to provide resources and collaboration opportunities between Houston's energy innovation ecosystem — from corporates to startups — to "accelerate the translation, evaluation and pre-commercialization of breakthrough carbon reduction technologies," per the news release.

“A decarbonization center of excellence in Houston is the missing link in the region’s coordinated approach to advancing critical energy transition technologies needed to mitigate the risks associated with climate change, while also promoting economic growth and job creation for the region,” Tudor continues.

Established in 1946, Argonne works with universities, industry, and other national laboratories on large, collaborative projects that are expected to make a big impact on the energy transition.

“Partnerships are essential to realizing net zero goals,” Argonne Director Paul Kearns adds. “We are pleased to extend DOE national laboratory expertise and work with HETI to focus the region’s considerable energy and industrial assets, infrastructure, and talent on broad commercial deployment of needed technologies.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston expert: The role of U.S. LNG in global energy markets

guest column

The debate over U.S. Liquefied Natural Gas (LNG) exports is too often framed in misleading, oversimplified terms. The reality is clear: LNG is not just a temporary fix or a bridge fuel, it is a fundamental pillar of global energy security and economic stability. U.S. LNG is already reducing coal use in Asia, strengthening Europe’s energy balance, and driving economic growth at home. Turning away from LNG exports now would be a shortsighted mistake, undermining both U.S. economic interests and global energy security.

Ken Medlock, Senior Director of the Baker Institute’s Center for Energy Studies, provides a fact-based assessment of the U.S. LNG exports that cuts through the noise. His analysis, consistent with McKinsey work, confirms that U.S. LNG is essential to balancing global energy markets for the decades ahead. While infrastructure challenges and environmental concerns exist, the benefits far outweigh the drawbacks. If the U.S. fails to embrace its leadership in LNG, we risk giving up our position to competitors, weakening our energy resilience, and damaging national security.

LNG Export Licenses: Options, Not Guarantees

A common but deeply flawed argument against expanding LNG exports is the assumption that granting licenses guarantees unlimited exports. This is simply incorrect. As Medlock puts it, “Licenses are options, not guarantees. Projects do not move forward if they are unable to find commercial footing.”

This is critical: government approvals do not dictate market outcomes. LNG projects must navigate economic viability, infrastructure feasibility, and global demand before becoming operational. This reality should dispel fears that expanded licensing will automatically lead to an uncontrolled surge in exports or domestic price spikes. The market, not government restrictions, should determine which projects succeed.

Canada’s Role in U.S. Gas Markets

The U.S. LNG debate often overlooks an important factor: pipeline imports from Canada. The U.S. and Canadian markets are deeply intertwined, yet critics often ignore this reality. Medlock highlights that “the importance to domestic supply-demand balance of our neighbors to the north and south cannot be overstated.”

Infrastructure Constraints and Price Volatility

One of the most counterproductive policies the U.S. could adopt is restricting LNG infrastructure development. Ironically, such restrictions would not only hinder exports but also drive up domestic energy prices. Medlock’s report explains this paradox: “Constraints that either raise development costs or limit the ability to develop infrastructure tend to make domestic supply less elastic. Ironically, this has the impact of limiting exports and raising domestic prices.”

The takeaway is straightforward: blocking infrastructure development is a self-inflicted wound. It stifles market efficiency, raises costs for American consumers, and weakens U.S. competitiveness in global energy markets. McKinsey research confirms that well-planned infrastructure investments lead to greater price stability and a more resilient energy sector. The U.S. should be accelerating, not hindering, these investments.

Short-Run vs. Long-Run Impacts on Domestic Prices

Critics of LNG exports often confuse short-term price fluctuations with long-term market trends. This is a mistake. Medlock underscores that “analysis that claims overly negative domestic price impacts due to exports tend to miss the distinction between short-run and long-run elasticity.”

Short-term price shifts are inevitable, driven by seasonal demand and supply disruptions. But long-term trends tell a different story: as infrastructure improves and production expands, markets adjust, and price impacts moderate. McKinsey analysis suggests supply elasticity increases as producers respond to price signals. Policy decisions should be grounded in this broader economic reality, not reactionary fears about temporary price movements.

Assessing the Emissions Debate

The argument that restricting U.S. LNG exports will lower global emissions is fundamentally flawed. In fact, the opposite is true. Medlock warns against “engineering scenarios that violate basic economic principles to induce particular impacts.” He emphasizes that evaluating emissions must be done holistically. “Constraining U.S. LNG exports will likely mean Asian countries will continue to turn to coal for power system balance,” a move that would significantly increase global emissions.

McKinsey’s research reinforces that, on a lifecycle basis, U.S. LNG produces fewer emissions than coal. That said, there is room for improvement, and efforts should focus on minimizing methane leakage and optimizing gas production efficiency.

However, the broader point remains: restricting LNG on environmental grounds ignores the global energy trade-offs at play. A rational approach would address emissions concerns while still recognizing the role of LNG in the global energy system.

The DOE’s Commonwealth LNG Authorization

The Department of Energy’s recent conditional approval of the Commonwealth LNG project is a step in the right direction. It signals that economic growth, energy security, and market demand remain key considerations in regulatory decisions. Medlock’s analysis makes it clear that LNG exports will be driven by market forces, and McKinsey’s projections show that global demand for flexible, reliable LNG is only increasing.

The U.S. should not limit itself with restrictive policies when the rest of the world is demanding more LNG. This is an opportunity to strengthen our position as a global energy leader, create jobs, and ensure long-term energy security.

Conclusion

The U.S. LNG debate must move beyond fear-driven narratives and focus on reality. The facts are clear: LNG exports strengthen energy security, drive economic growth, and reduce global emissions by displacing coal.

Instead of restrictive policies that limit LNG’s potential, the U.S. should focus on expanding infrastructure, maintaining market flexibility, and supporting innovation to further reduce emissions. The energy transition will be shaped by market realities, not unrealistic expectations.

The U.S. has an opportunity to lead. But leadership requires embracing economic logic, investing in infrastructure, and ensuring our policies are guided by facts, not political expediency. LNG is a critical part of the global energy landscape, and it’s time to recognize its long-term strategic value.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Woodlands company licenses free patents to ERCOT to boost grid reliability

grid deal

Lancium, a company based in The Woodlands that specializes in infrastructure for connecting large-scale data centers to power grids, is licensing a portfolio of patents to the Electric Reliability Council of Texas (ERCOT) at no cost.

In a news release, Lancium says the intellectual property agreement “ensures ERCOT can sublicense these patents freely, thereby expanding market participation opportunities without risk of patent infringement disputes.”

“This agreement exemplifies Lancium’s dedication to supporting grid stability and innovation across the ERCOT region,” Michael McNamara, CEO of Lancium, said in a news release. “While these patents represent significant technological advancements, we believe that enabling ERCOT and its market participants to operate freely is more valuable for the long-term reliability and resilience of the Texas grid.”

The licensed patents encompass Lancium technologies that support load resources in ERCOT’s market, which covers about 90 percent of Texas. Specifically, the patents deal with controllable load resources. A controlled load resource allows ERCOT and other grids to increase or decrease power consumption during peak periods or emergencies.

ERCOT predicts power demand in Texas will nearly double by 2030, “in part due to more requests to plug into the grid from large users like data centers, crypto mining facilities, hydrogen production plants, and oil and gas companies,” The Texas Tribune reported.

Harris County looks to future with new Climate Justice Plan

progress plan

Harris County commissioners approved a five-point Climate Justice Plan last month with a 3-1 vote by Harris County commissioners. The plan was created by the Office of County Administration’s Office of Sustainability and the nonprofit Coalition for Environment, Equity and Resilience.

“Climate action planning that centers on justice has the potential to spark innovative thinking and transformative actions that will lead to meaningful and just transitions in communities, policies, funding mechanisms, and implementation strategies,” the 59-page report reads.

The plan seeks to address issues relating to ecology, infrastructure, economy, community and culture. Here’s a breakdown:

Ecology

The plan will work towards clean air, water, and soil efforts that support the health of the environment, renewable energy that reduces greenhouse gases and pollution, and conservation and protection of our natural resources. Some action items include:

  • Increasing resources for local government agencies
  • Developing a free native seed bank at all libraries
  • Identifying partners and funding streams to reduce the costs of solar power for area households
  • Producing renewable energy on large tracts of land
  • Expanding tree planting by 20 percent
  • Providing tree maintenance and restoration efforts
  • Incentivizing gray water systems and filtration to conserve fresh water

Economy

In terms of the economy, the Climate Justice Plan wants the basic needs of the community met and wants to also incentivize resilience, sustainability, and climate solutions, and recycling and reuse methods. Specific actions include:

  • Quantifying the rising costs associated with climate change
  • Expanding resources and partnering with organizations to support programs that provide food, utility, housing, and direct cash assistance
  • Supporting a coalition of area non-profit organizations and county offices to strengthen social service support infrastructure
  • Supporting home repair, solar installation, and weatherization programs
  • Identify methods to expand free and efficient recycling and composting services
  • Creating a climate tax levied on greenhouse gas emissions to develop a climate fund to offset the impacts of pollution

Infrastructure

As Houston has been prone to hurricanes and flooding damage, the infrastructure portion of the plan aims to protect the region from risks through preventative floodplain and watershed management. Highlights include:

  • Investing in generators and solar power, plus battery backup and bidirectional EV charging for all county libraries
  • Providing more heating and cooling centers with charging stations
  • Coordinating and deploying community microgrids, especially in neighborhoods prone to losing power
  • Seeking partnerships and funding for low- or no-cost water purifiers for areas with the highest needs
  • Protecting the electric grid through regular maintenance and upgrading, and advocating for greater accountability and responsiveness among appointed officials
  • Developing regulations to require resilient power line infrastructure to prevent outages and failures in new developments

Community and Culture

Housing, a strong economy and access to affordable and healthy food will be achieved under the community aspect of the plan. Under culture, the plan seeks to share knowledge and build trust. Key goals include:

  • Developing a campaign to promote the use of the Harris County 311 system to identify critical community concerns
  • Supporting the development of a Community Housing Plan that ensures stable and safe housing
  • Advocating for revisions to Federal Emergency Management Agency (FEMA) disaster funding to account for renters’ losses and unmet housing needs
  • Developing and funding a whole-home program for repairs, weatherization, and solar energy
  • Developing culturally relevant public relations campaigns to increase knowledge of health, environment and biodiversity across generations
Read the full plan here.