IRA ready

Houston solar company snags partnership with clean energy SaaS platform

Stella Energy Solutions will use the newly launched Empact platform to ensure its projects meet IRA requirements. Photo courtesy of Empact

Houston solar utility and story company has tapped into tech from a clean energy incentive management software and services business.

Stella Energy Solutions, a utility-scale solar and storage developer, has entered into a multi-year agreement with Empact Technologies, which provides software and services for clean energy tax incentive management. The new platform launches this week and is "designed to maximize the impact of clean energy project incentives under America’s Inflation Reduction Act," according to a news release.

Moving forward, Stella will use the Empact Technologies platform to manage its IRA tax incentives on all its projects for the next five years.

“Ensuring adherence to the new IRA tax incentive requirements is a critical element of our project financing,” says Staats Battle, senior vice president of operations at Stella Energy, in the release. “We chose Empact Technologies to manage the entire process on our behalf, from working with our EPCs and project suppliers, to providing third party proof of our compliance to our financing partners.”

The Empact platform uses a combination of software and services to make sure projects meet IRS regulatory requirements, which focus on wage and apprenticeship, domestic content, and energy and low-income community incentives, according to the release.

“We’re on the brink of a global transformation to a clean energy future. Empact’s platform will enable a more sustainable and equitable energy transition by optimizing the financial, social, and environmental impact of clean energy projects,” said Charles Dauber, founder and CEO of Empact Technologies, in the release.

Per a Goldman Sachs report, the IRA is estimated to provide $1.2 trillion of incentives by 2032.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News