Empact’s goal is to help energy companies maximize the tax credits for their clean energy projects. Photo courtesy of Empact

A Houston company has an update to its first-of-its-kind software to assist emerging technology and energy companies with Inflation Reduction Act Energy Community Bonus Credit compliance management and reporting requirements for renewable energy projects.

Empact Technologies has released a software update that incorporates support for the latest IRA Energy Community Bonus management and reporting requirements. The new software is provided at no additional cost to existing Empact clients, and is available to qualified communities through a free trial via Empact’s website.

Empact’s goal is to help energy companies maximize the tax credits for their clean energy projects.

“Empact is the first (and only) company that provides technology and services to help the project developers qualify for and ensure compliance with all of those IRA tax incentive compliance requirements,“ CEO Charles Dauber tells EnergyCapital. “We work with project developers of solar, energy storage, carbon capture and sequestration, and other projects in ERCOT and around the country to manage compliance for the PWA, domestic content, and energy community compliance requirements and make sure they have all of the documentation required to prove to the IRS that these tax credits are valid.”

The software is the first in the industry to incorporate the most recent energy community guidelines released by the U.S. Department of the Treasury and the Internal Revenue Service, known as Notice 2024-48. These guidelines outline Energy Community Bonus qualification requirements for the “Statistical Area Category” and the “Coal Closure Category” in Notice 2023-29.

Empact’s platform will provide tax incentive compliance management for all three types of credits, which will be covered in the IRA’s estimated $1.2 trillion in tax incentives. The credits include a base energy project tax incentive (30 percent) for projects that meet prevailing wage and apprenticeship requirements, a domestic content tax adder (10 percent), and an energy community tax adder (10 percent). Notice 2024-48 is able to be used by developers to confirm project qualification for Energy Community Bonus opportunities.

Empact will support clients on eligibility requirements, manage compliance documentation and verification requirements.

“The IRA is considered the greatest and biggest accelerator for clean energy in the U.S.,” Dauber says. “The IRA provides significant tax incentives for developers of solar, energy storage, wind and other clean power technologies, as well as energy transition projects such as carbon capture and sequestration, hydrogen, biofuels and more.”

According to Empact, the way the IRA works is that developers of projects can “generate” tax credits based on meeting certain project requirements. There are three main factors in play:

  1. The foundational element of the tax credits provides a 30 percent tax credit of the project cost if the project meets requirements related to ensuring a fair wage for construction workers and utilizing a certain amount of apprentices on the project (called Prevailing Wage and Apprenticeship). The project developer (all the EPC and all contractors) must provide documentation that every worker has been paid correctly and that all apprenticeship requirements have been met. Some projects have hundreds of workers from 10-plus contractors every week.
  2. The second tax credit relates to the project utilizing steel and iron and other “manufactured products” such as solar modules, that are made in the U.S. If the project meets the “domestic content” requirements, it is eligible for another 10 percent tax credit. Project developers have to prove the products they use are made in the U.S. and there are calculations that must be done to meet the threshold that goes up every year.
  3. The third tax credit is related to the location of the project. The government is trying to incentivize project developers to put projects in locations with high unemployment, or sites that have existing power generation facilities, or are in areas that used to be coal communities. That tax incentive is called “Energy Communities” and provides an additional 10 percent tax credit for the project developers. To qualify for that tax credit, the developer must provide proof that the project is located in an energy community location.

Companies that remain in compliance by using the software will see immediate benefits, and the clean energy industry as a whole will benefit from Empact’s facilitation of tax credit utilization.

“If a developer does this all correctly, they can qualify for tax credits equal to 50 percent of the cost of the project which is an enormous benefit to getting more projects built and encouraging a balanced energy program in the U.S.” Dauber says. “For example, a 100MW solar farm may cost $100 million, and if they meet all of the criteria, they can qualify for $50 million in tax incentives. The same calculations work for carbon capture, hydrogen and other projects as well although there are some slight differences.

Last August, Stella Energy Solutions, a utility-scale solar and storage developer, entered into a multi-year agreement with Empact to use the platform to manage Stella's IRA tax incentives on all its projects for the next five years.

Stella Energy Solutions will use the newly launched Empact platform to ensure its projects meet IRA requirements. Photo courtesy of Empact

Houston solar company snags partnership with clean energy SaaS platform

IRA ready

Houston solar utility and story company has tapped into tech from a clean energy incentive management software and services business.

Stella Energy Solutions, a utility-scale solar and storage developer, has entered into a multi-year agreement with Empact Technologies, which provides software and services for clean energy tax incentive management. The new platform launches this week and is "designed to maximize the impact of clean energy project incentives under America’s Inflation Reduction Act," according to a news release.

Moving forward, Stella will use the Empact Technologies platform to manage its IRA tax incentives on all its projects for the next five years.

“Ensuring adherence to the new IRA tax incentive requirements is a critical element of our project financing,” says Staats Battle, senior vice president of operations at Stella Energy, in the release. “We chose Empact Technologies to manage the entire process on our behalf, from working with our EPCs and project suppliers, to providing third party proof of our compliance to our financing partners.”

The Empact platform uses a combination of software and services to make sure projects meet IRS regulatory requirements, which focus on wage and apprenticeship, domestic content, and energy and low-income community incentives, according to the release.

“We’re on the brink of a global transformation to a clean energy future. Empact’s platform will enable a more sustainable and equitable energy transition by optimizing the financial, social, and environmental impact of clean energy projects,” said Charles Dauber, founder and CEO of Empact Technologies, in the release.

Per a Goldman Sachs report, the IRA is estimated to provide $1.2 trillion of incentives by 2032.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.