tech optimized

SLB unveils AI-powered tech to enhance drilling efficiency and reduce emissions

SLB has introduced Neuro, an AI-driven autonomous geosteering system that optimizes well drilling by responding to complex subsurfaces, enhancing efficiency, and reducing carbon emissions. Photo courtesy of SLB

Houston energy technology company SLB introduced a new autonomous geosteering system called Neuro, which can reduce the carbon footprint of the drilling operations. Neuro can respond to complex subsurfaces to drill more efficiently with higher-performing wells.

Neuro, which is an AI-based platform,expands the technological foundation of SLB’s Neuro autonomous directional drilling, which drills wells to a specific target. Now, the Neuro autonomous geosteering incorporates high-fidelity downhole measurements that ensure certainty of well placement in the best part of the reservoir.

“Neuro autonomous geosteering is a remarkable industry-first achievement that is for drillers what the autonomous vehicle is for drivers,” Jesus Lamas, president of Well Construction at SLB, says in a news release. “Using advanced cloud and edge AI capabilities, the system automatically selects the best route for drilling the well based on high-fidelity downhole measurements, bringing the well trajectory in line with the real-world conditions of the reservoir.”

SLB deployed Neuro autonomous geosteering that drilled a 2,392-foot lateral section of an onshore well for Shaya Ecuador S.A. SLB's autonomous system completed 25 autonomous geosteering trajectory changes in a matter of seconds according to SLB. By remaining in the most productive layer of the reservoir, the well has become one of the best producers in Ecuador, according to SLB.

“By drilling more consistent and higher-producing wells, our customers can optimize their field development plan while reducing operational emissions from drilling over the lifetime of the asset,” Lamas adds.

Trending News

A View From HETI

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Trending News