M&A Move

Repsol to acquire Houston-based renewable energy platform

Repsol announced that it's buying ConnectGen from Quantum Capital Group, a Houston-based private equity firm that focuses on energy investments. Photo via Getty Images

Spanish energy giant Repsol is breaking into the U.S. market for onshore wind power with its $768 million deal to purchase Houston-based renewable energy startup ConnectGen.

Repsol is buying ConnectGen from Quantum Capital Group, a Houston-based private equity firm that focuses on energy investments, according to a September 8 news release. Quantum’s renewable energy arm, 547 Energy, owns ConnectGen.

ConnectGen, founded in 2018, operates 278 megawatts of solar energy projects in Arizona, California, and Nevada. Its nationwide development pipeline features more than 20,000 megawatts of wind power, solar power, and energy storage projects.

“All of us at Quantum and 547 Energy are looking forward to watching Repsol convert these development projects into operating assets that will help power the American economy with clean renewable electricity over the next decade,” says Wil VanLoh, founder, chairman, and CEO of Quantum.

Quantum and its affiliates have managed more than $22 billion in equity investments since the firm was founded in 1998.

Once the deal tentatively closes by the end of 2023, current ConnectGen employees, including senior executives, are expected to join Repsol’s renewable energy team. Caton Fenz has been CEO of ConnectGen since 2019. He previously was the startup’s chief development officer.

“The addition of ConnectGen accelerates our commitment to renewable generation in one of the markets with the greatest potential for future growth. In that sense, bringing on board its valuable team of experts is key to [ensuring] our successful future growth with robust profitability in the market,” says Josu Jon Imaz, CEO of Repsol.

Repsol has targeted 20,000 megawatts of installed global capacity for renewable energy by 2030. The company owns 245 megawatts of renewable energy assets in the U.S. and 2,000 megawatts worldwide.

ConnectGen’s capabilities build on Repsol’s 2021 purchase of a 40 percent stake in Chicago-based Hecate Energy, which develops solar power generation and energy storage projects.

Repsol aims to operate 2,000 megawatts of installed renewable energy capacity in the U.S. by 2025 and more than 8,000 megawatts by 2030. Aside from the U.S., Repsol owns renewable energy assets in Chile, Italy, Portugal, and Spain.

In the U.S., Repsol, ConnectGen, and other companies are capitalizing on tax credits contained in the federal Inflation Reduction Act of 2022 that are designed to spark development of clean energy projects. The law earmarks nearly $400 billion in federal funding for clean energy initiatives.

A new study funded by the BlueGreen Alliance, a group backed by labor unions and environmental organizations, indicates the law could add more than 1.5 million jobs in the solar and wind power sectors by 2035. Tens of thousands of these jobs will undoubtedly be created in Texas.

The White House estimates the Inflation Reduction Act will spur $66.5 billion in Texas investments in large-scale clean power generation and storage projects between now and 2030.

“Strengthening our energy security advances two goals: It lowers costs for all Americans by ensuring a resilient and affordable supply of clean energy, and it fosters American innovation in difficult-to-decarbonize sectors,” Lily Batchelder, assistant secretary for tax policy at the U.S. Treasury Department, said in a recent update about the law.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News