Caton Fenz, CEO for Repsol’s Renewables North America, shares more about Repsol’s approach to expanding its renewable footprint, integrating green energy into its core business and leveraging Houston’s unique role as a leader in the energy transition. Photo via HETI

Houston hosted the inaugural Energy + Climate Startup Week in September, which brought together leading energy and climate venture capital investors, industry leaders and startups from around the world to showcase the most innovative companies and technologies that are transforming the energy industry while driving a sustainable, low-carbon energy future.

Repsol was one of the inaugural sponsors for the weeks kick off event that hosted several leading startups. This year marked 25 years of energy innovation for Repsol in the United States. As the energy landscape evolves, Repsol has committed to significant growth in renewable capacity, with an impressive 720 MW of solar and storage capacity already operational and 1.5 GW under construction.

Caton Fenz, CEO for Repsol’s Renewables North America shares more about Repsol’s approach to expanding its renewable footprint, integrating green energy into its core business and leveraging Houston’s unique role as a leader in the energy transition. Here’s an inside look at Repsol’s milestones and future goals in the journey toward decarbonization and a sustainable energy future.

Can you tell us more about Repsol’s strategy for expanding its renewables business?

This year Repsol is celebrating 25 years of energy development in the United States. Across the US, we have a team of more than 800 employees, with more than 130 employees working in the renewables business specifically.

Repsol’s growth ambition in the US renewable energy market is significant. Since launching our renewables activity in the US three years ago, we have installed more than 720 MW of solar generation and energy storage capacity. Today we have more than 1.5 GW of additional solar and energy storage capacity under construction, and more than 20 GW of solar, wind and energy storage in development across 13 states.

How does Repsol plan to integrate renewable energy sources into its broader business model?

Repsol Renewables operates in accordance with Repsol’s values and strategies. Renewable energy generation is one of the pillars of Repsol’s decarbonization strategy. Repsol will invest between €3 and 4 billion to organically develop its global project portfolio and aims to reach between 9,000 MW and 10,000 MW of installed capacity by 2027. Of this, 30% will be in the United States.

With these objectives in mind, we have been able to accelerate the development of wind, solar, and energy storage across the US market and the globe. By expanding our renewable energy business, we can further meet record demand growth for renewable energy.

What are the key projects or milestones that have been achieved within Repsol’s renewables portfolio so far?

Earlier this year, we announced the commercial operation of Frye Solar, our largest solar project worldwide. This project, located in Swisher County, Texas, has a total capacity of 637 MW. And as noted above, we have an additional 1.4 GW of projects under construction currently. These major energy infrastructure projects are indicative of the scale of our operations in the US.

Why does Repsol believe being located in Houston is critical for its business, particularly in the energy transition?

Repsol is proudly committed to Houston’s role in developing and delivering energy and value for the world. Houston is known as the Energy Capital of the World and over the next 10 years, we’ll see it be known as the Energy Transition Capital of the World. With Repsol’s Renewables North America business located in downtown Houston, we have access to talent and partnerships in a booming city filled with energy experts.

Why does Repsol see value in participating in Houston Energy + Climate Startup Week?

At Houston Energy + Climate Startup Week, Repsol Renewables is honored to support and learn from leaders and investors in the energy and climate industry. We believe it is important to continuously invest in talent, ideas, and collaboration across the energy value chain as we pursue our net zero by 2050 goal.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Last month, the inaugural Houston Energy and Climate Startup Week 2024 successfully highlighted the GHP and HETI's mission. Photo via GHP

Highlights from the inaugural Houston Energy and Climate Startup Week

the view from heti

Houston has become the hub for startups and companies looking to scale innovative technologies that are transforming the energy industry and advancing a sustainable, low-carbon future. Last month, the inaugural Houston Energy and Climate Startup Week 2024 successfully highlighted this mission.

Rice Alliance for Technology and Entrepreneurship, Halliburton Labs, Greentown Labs, Digital Wildcatters launched the inaugural startup week in collaboration with the Partnership’s Houston Energy Transition Initiative. The week brought together leading energy and climate venture capital investors, industry leaders, and startups from around the world.

Over 30 events took place from September 9-13, featuring more than 100 speakers and 125 startups. Attendance numbers came in at over 1,400 people across the week’s anchor events, and additional events were individually organized by organizations and startups in Houston’s ecosystem.

“By hosting the Houston Energy & Climate Startup Week, we're not just showcasing our city's strengths - we're actively shaping its future. This event is a critical catalyst for fostering collaboration, investment and talent development within the burgeoning energy and climate tech ecosystem. This week is about demonstrating our commitment to that future and inspiring the next generation of energy innovators,” says Janice Tran, Kanin Energy CEO & Co-Founder

The Kickoff event, sponsored by Repsol, Microsoft and BBVA, hosted fireside chats by several of Houston’s leading startups, including Solugen, Cemvita, Kanin Energy and Syzygy.

“Houston is at the forefront of not just energy innovation, but industrial innovation more broadly. With the momentum that's built over the last few years, it's the perfect time to showcase our progress and drive further advancements in climate solutions,” says Gaurab Chakrabarti, Solugen CEO and co-founder.

Houston is home to more than 65 incubators and accelerators and over 260 cleantech and climate tech startups. The region continues to build momentum and is focused on attracting investment for this growing sector, seeing a 577 percent growth since 2019. According to Partnership data, there has been over $1.95 billion and 175 deals with cleantech and climate tech startups.

"Houston is uniquely positioned to tackle the greatest challenge of our time - producing more energy with fewer emissions. This city is where energy innovation scales and opportunity thrives. As a natural hub for startups and investors, Houston brought this to life during Houston Energy and Climate Startup Week. Years in the making, this event was launched to answer the question: Can the whole be greater than the sum of its parts? This past week proved it can. We look forward to continue building on this successful week,” says Jane Stricker, senior vice president at Greater Houston Partnership and executive director of the Houston Energy Transition Initiative.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Repsol announced that it's buying ConnectGen from Quantum Capital Group, a Houston-based private equity firm that focuses on energy investments. Photo via Getty Images

Repsol to acquire Houston-based renewable energy platform

M&A Move

Spanish energy giant Repsol is breaking into the U.S. market for onshore wind power with its $768 million deal to purchase Houston-based renewable energy startup ConnectGen.

Repsol is buying ConnectGen from Quantum Capital Group, a Houston-based private equity firm that focuses on energy investments, according to a September 8 news release. Quantum’s renewable energy arm, 547 Energy, owns ConnectGen.

ConnectGen, founded in 2018, operates 278 megawatts of solar energy projects in Arizona, California, and Nevada. Its nationwide development pipeline features more than 20,000 megawatts of wind power, solar power, and energy storage projects.

“All of us at Quantum and 547 Energy are looking forward to watching Repsol convert these development projects into operating assets that will help power the American economy with clean renewable electricity over the next decade,” says Wil VanLoh, founder, chairman, and CEO of Quantum.

Quantum and its affiliates have managed more than $22 billion in equity investments since the firm was founded in 1998.

Once the deal tentatively closes by the end of 2023, current ConnectGen employees, including senior executives, are expected to join Repsol’s renewable energy team. Caton Fenz has been CEO of ConnectGen since 2019. He previously was the startup’s chief development officer.

“The addition of ConnectGen accelerates our commitment to renewable generation in one of the markets with the greatest potential for future growth. In that sense, bringing on board its valuable team of experts is key to [ensuring] our successful future growth with robust profitability in the market,” says Josu Jon Imaz, CEO of Repsol.

Repsol has targeted 20,000 megawatts of installed global capacity for renewable energy by 2030. The company owns 245 megawatts of renewable energy assets in the U.S. and 2,000 megawatts worldwide.

ConnectGen’s capabilities build on Repsol’s 2021 purchase of a 40 percent stake in Chicago-based Hecate Energy, which develops solar power generation and energy storage projects.

Repsol aims to operate 2,000 megawatts of installed renewable energy capacity in the U.S. by 2025 and more than 8,000 megawatts by 2030. Aside from the U.S., Repsol owns renewable energy assets in Chile, Italy, Portugal, and Spain.

In the U.S., Repsol, ConnectGen, and other companies are capitalizing on tax credits contained in the federal Inflation Reduction Act of 2022 that are designed to spark development of clean energy projects. The law earmarks nearly $400 billion in federal funding for clean energy initiatives.

A new study funded by the BlueGreen Alliance, a group backed by labor unions and environmental organizations, indicates the law could add more than 1.5 million jobs in the solar and wind power sectors by 2035. Tens of thousands of these jobs will undoubtedly be created in Texas.

The White House estimates the Inflation Reduction Act will spur $66.5 billion in Texas investments in large-scale clean power generation and storage projects between now and 2030.

“Strengthening our energy security advances two goals: It lowers costs for all Americans by ensuring a resilient and affordable supply of clean energy, and it fosters American innovation in difficult-to-decarbonize sectors,” Lily Batchelder, assistant secretary for tax policy at the U.S. Treasury Department, said in a recent update about the law.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil, Rice launch sustainability initiative with first project underway

power partners

Houston-based ExxonMobil and Rice University announced a master research agreement this week to collaborate on research initiatives on sustainable energy efforts and solutions. The agreement includes one project that’s underway and more that are expected to launch this year.

“Our commitment to science and engineering, combined with Rice’s exceptional resources for research and innovation, will drive solutions to help meet growing energy demand,” Mike Zamora, president of ExxonMobil Technology and Engineering Co., said in a news release. “We’re thrilled to work together with Rice.”

Rice and Exxon will aim to develop “systematic and comprehensive solutions” to support the global energy transition, according to Rice. The university will pull from the university’s prowess in materials science, polymers and catalysts, high-performance computing and applied mathematics.

“Our agreement with ExxonMobil highlights Rice’s ability to bring together diverse expertise to create lasting solutions,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in the release. “This collaboration allows us to tackle key challenges in energy, water and resource sustainability by harnessing the power of an interdisciplinary systems approach.”

The first research project under the agreement focuses on developing advanced technologies to treat desalinated produced water from oil and gas operations for potential reuse. It's being led by Qilin Li, professor of civil and environmental engineering at Rice and co-director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) Center.

Li’s research employs electrochemical advanced oxidation processes to remove harmful organic compounds and ammonia-nitrogen, aiming to make the water safe for applications such as agriculture, wildlife and industrial processes. Additionally, the project explores recovering ammonia and producing hydrogen, contributing to sustainable resource management.

Additional projects under the agreement with Exxon are set to launch in the coming months and years, according to Rice.

Houston geothermal company secures major power purchase agreement with Shell

under contract

Beginning in 2026, Shell will be able to apply 31 megawatts of 24/7 carbon-free geothermal power to its customers thanks to a new 15-year power purchase agreement with Houston next-gen geothermal development company Fervo Energy.

“This agreement demonstrates that Fervo is stepping up to meet the moment,” Dawn Owens, VP, Head of Development & Commercial Markets at Fervo, said in a news release.

Shell will become the first offtaker to receive electrons from Fervo's flagship geothermal development in Beaver County, Utah’s Phase I of Cape Station. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026.

Cape Station will increase from 400 MW to 500 MW, which is considered by the company a major accomplishment due to recent breakthroughs in Fervo’s field development strategy and well design. Fervo is now able to generate more megawatts per well by optimizing well spacing using fiber optic sensing, increasing casing diameter and implementing staggered bench development. This can allow for a 100 MW capacity increase without the need for additional drilling, according to the company.

With the addition of the new Shell deal, all 500 MW of capacity from Fervo’s Cape Station are now fully contracted. The deal also includes existing agreements, like Fervo’s PPAs with Southern California Edison and an expanded deal with Clean Power Alliance that adds 18 MW of carbon-free geothermal energy to the company’s existing PPA with Fervo.

“As customers seek out 24/7 carbon-free energy, geothermal is clearly an essential part of the solution,” Owens said in the release.

Houston expert: From EVs to F-35s — materials that power our future are in short supply

guest column

If you’re reading this on a phone, driving an EV, flying in a plane, or relying on the power grid to keep your lights on, you’re benefiting from critical minerals. These are the building blocks of modern life. Things like copper, lithium, nickel, rare earth elements, and titanium, they’re found in everything from smartphones to solar panels to F-35 fighter jets.

In short: no critical minerals, no modern economy.

These minerals aren’t just useful, they’re essential. And in the U.S., we don’t produce enough of them. Worse, we’re heavily dependent on countries that don’t always have our best interests at heart. That’s a serious vulnerability, and we’ve done far too little to fix it.

Where We Use Them and Why We’re Behind

Let’s start with where these minerals show up in daily American life:

  • Electric vehicles need lithium, cobalt, and nickel for batteries.
  • Wind turbines and solar panels rely on rare earths and specialty metals.
  • Defense systems require titanium, beryllium, and rare earths.
  • Basic infrastructure like power lines and buildings depend on copper and aluminum.

You’d think that something so central to the economy, and to national security, would be treated as a top priority. But we’ve let production and processing capabilities fall behind at home, and now we’re playing catch-up.

The Reality Check: We’re Not in Control

Right now, the U.S. is deeply reliant on foreign sources for critical minerals, especially China. And it’s not just about mining. China dominates processing and refining too, which means they control critical links in the supply chain.

Gabriel Collins and Michelle Michot Foss from the Baker Institute lay all this out in a recent report that every policymaker should read. Their argument is blunt: if we don’t get a handle on this, we’re in trouble, both economically and militarily.

China has already imposed export controls on key rare earth elements like dysprosium and terbium which are critical for magnets, batteries, and defense technologies, in direct response to new U.S. tariffs. This kind of tit-for-tat escalation exposes just how much leverage we’ve handed over. If this continues, American manufacturers could face serious material shortages, higher costs, and stalled projects.

We’ve seen this movie before, in the pandemic, when supply chains broke and countries scrambled for basics like PPE and semiconductors. We should’ve learned our lesson.

We Do Have a Stockpile, But We Need a Strategy

Unlike during the Cold War, the U.S. no longer maintains comprehensive strategic reserves across the board, but we do have stockpiles managed by the Defense Logistics Agency. The real issue isn’t absence, it’s strategy: what to stockpile, how much, and under what assumptions.

Collins and Michot Foss argue for a more robust and better-targeted approach. That could mean aiming for 12 to 18 months worth of demand for both civilian and defense applications. Achieving that will require:

  • Smarter government purchasing and long-term contracts
  • Strategic deals with allies (e.g., swapping titanium for artillery shells with Ukraine)
  • Financing mechanisms to help companies hold critical inventory for emergency use

It’s not cheap, but it’s cheaper than scrambling mid-crisis when supplies are suddenly cut off.

The Case for Advanced Materials: Substitutes That Work Today

One powerful but often overlooked solution is advanced materials, which can reduce our dependence on vulnerable mineral supply chains altogether.

Take carbon nanotube (CNT) fibers, a cutting-edge material invented at Rice University. CNTs are lighter, stronger, and more conductive than copper. And unlike some future tech, this isn’t hypothetical: we could substitute CNTs for copper wire harnesses in electrical systems today.

As Michot Foss explained on the Energy Forum podcast:

“You can substitute copper and steel and aluminum with carbon nanotube fibers and help offset some of those trade-offs and get performance enhancements as well… If you take carbon nanotube fibers and you put those into a wire harness… you're going to be reducing the weight of that wire harness versus a metal wire harness like we already use. And you're going to be getting the same benefit in terms of electrical conductivity, but more strength to allow the vehicle, the application, the aircraft, to perform better.”

By accelerating R&D and deployment of CNTs and similar substitutes, we can reduce pressure on strained mineral supply chains, lower emissions, and open the door to more secure and sustainable manufacturing.

We Have Tools. We Need to Use Them.

The report offers a long list of solutions. Some are familiar, like tax incentives, public-private partnerships, and fast-tracked permits. Others draw on historical precedent, like “preclusive purchasing,” a WWII tactic where the U.S. bought up materials just so enemies couldn’t.

We also need to get creative:

  • Repurpose existing industrial sites into mineral hubs
  • Speed up R&D for substitutes and recycling
  • Buy out risky foreign-owned assets in friendlier countries

Permitting remains one of the biggest hurdles. In the U.S., it can take 7 to 10 years to approve a new critical minerals project, a timeline that doesn’t match the urgency of our strategic needs. As Collins said on the Energy Forum podcast:

“Time kills deals... That’s why it’s more attractive generally to do these projects elsewhere.”

That’s the reality we’re up against. Long approval windows discourage investment and drive developers to friendlier jurisdictions abroad. One encouraging step is the use of the Defense Production Act to fast-track permitting under national security grounds. That kind of shift, treating permitting as a strategic imperative, must become the norm, not the exception.

It’s Time to Redefine Sustainability

Sustainability has traditionally focused on cutting carbon emissions. That’s still crucial, but we need a broader definition. Today, energy and materials security are just as important.

Countries are now weighing cost and reliability alongside emissions goals. We're also seeing renewed attention to recycling, biodiversity, and supply chain resilience.

Net-zero by 2050 is still a target. But reality is forcing a more nuanced discussion:

  • What level of warming is politically and economically sustainable?
  • What tradeoffs are we willing to make to ensure energy access and affordability?

The bottom line: we can’t build a clean energy future without secure access to materials. Recycling helps, but it’s not enough. We'll need new mines, new tech, and a more flexible definition of sustainability.

My Take: We’re Running Out of Time

This isn’t just a policy debate. It’s a test of whether we’ve learned anything from the past few years of disruption. We’re not facing an open war, but the risks are real and growing.

We need to treat critical minerals like what they are: a strategic necessity. That means rebuilding stockpiles, reshoring processing, tightening alliances, and accelerating permitting across the board.

It won’t be easy. But if we wait until a real crisis hits, it’ll be too late.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn on April 11, 2025.