plugging in

Reliant, GM Energy team up on free renewable energy EV charging

Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights. Photo via reliant.com

Reliant Energy and GM Energy are advancing a new renewable energy electricity plan that will “accelerate the clean energy journey for the two companies and their customers,” according to a news release.

Houston-based Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights.

The Reliant FreeCharge Nights plan will be available to existing and new Reliant electricity customers, and provides a monthly bill credit that offsets the energy charges incurred from charging the qualifying EV between 11 pm and 6 am. Customers must first designate one EV to receive the charging credit in their GM Energy Smart Charging Portal before signing up for the plan.

“As we continue to shape the future of EV charging and energy management for our customers, our work alongside Reliant in Texas is a sign of our commitment to working with industry leaders to facilitate more solutions that make EV adoption an easy decision,” Aseem Kapur, chief revenue officer, GM Energy, says in a news release. “The Reliant Free Charge Nights plan is a great example of how an automaker and an energy company can work together to build the ecosystem to support the all-electric future.”

Over 150 Chevrolet dealerships can now offer the plan to EV drivers upon vehicle purchase across Texas. The plan will be powered by 100 percent renewable energy through the purchase of renewable energy certificates (RECs) equal to the customer’s electricity usage.

“We’re excited to help Chevrolet EV drivers offset the cost of charging their vehicle all while having access to a renewable electricity plan,” Rasesh Patel, president, NRG Consumer, said in a news release.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News