plugging in

Reliant, GM Energy team up on free renewable energy EV charging

Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights. Photo via reliant.com

Reliant Energy and GM Energy are advancing a new renewable energy electricity plan that will “accelerate the clean energy journey for the two companies and their customers,” according to a news release.

Houston-based Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights.

The Reliant FreeCharge Nights plan will be available to existing and new Reliant electricity customers, and provides a monthly bill credit that offsets the energy charges incurred from charging the qualifying EV between 11 pm and 6 am. Customers must first designate one EV to receive the charging credit in their GM Energy Smart Charging Portal before signing up for the plan.

“As we continue to shape the future of EV charging and energy management for our customers, our work alongside Reliant in Texas is a sign of our commitment to working with industry leaders to facilitate more solutions that make EV adoption an easy decision,” Aseem Kapur, chief revenue officer, GM Energy, says in a news release. “The Reliant Free Charge Nights plan is a great example of how an automaker and an energy company can work together to build the ecosystem to support the all-electric future.”

Over 150 Chevrolet dealerships can now offer the plan to EV drivers upon vehicle purchase across Texas. The plan will be powered by 100 percent renewable energy through the purchase of renewable energy certificates (RECs) equal to the customer’s electricity usage.

“We’re excited to help Chevrolet EV drivers offset the cost of charging their vehicle all while having access to a renewable electricity plan,” Rasesh Patel, president, NRG Consumer, said in a news release.

Trending News

A View From HETI

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

Trending News