Q&A

Energy startup exec unveils breakthrough battery chemistry to revolutionize energy storage solutions

Will Tope, chief commercial officer of LiNa Energy, joined the Energy Tech Startups podcast to discuss the company's unique technology and growth plans. Photo via LinkedIn

In a world striving for sustainable and efficient energy solutions, United Kingdom-based LiNa Energy emerges as a promising player in the field of advanced battery technologies.

With a focus on overcoming the limitations of traditional lithium-ion batteries, LiNa Energy — a member of the 2023 cohort for Houston-based incubator, Halliburton Labs — presents a unique chemistry that holds the potential to revolutionize energy storage.

In a recent episode of Energy Tech Startups with Will Tope, chief commercial officer of LiNa Energy, we delve into the key aspects of LiNa Energy's technology, exploring the challenges they seek to address and their plans for commercialization.

Energy Tech Startups: What is the main problem that LiNa Energy is trying to solve with their battery technology?

Will Tope: LiNa Energy is driven by a pressing dilemma in today's storage landscape: the limited efficiency and high costs associated with existing storage technologies. They aim to bridge the gap, providing low-cost, long-duration energy storage solutions that can effectively accommodate the increasing penetration of renewable energy sources in power grids worldwide. By addressing this critical need, LiNa Energy aims to unlock the full potential of low-cost, low-carbon electrons for global energy consumption patterns.

ETS: How does LiNa Energy's battery technology differ from traditional lithium-ion batteries?

WT: LiNa Energy's technology distinguishes itself through its unique chemistry and progressive use of ceramics. By combining a stable sodium-based chemistry, developed in the 1970s, with advancements in ceramics from the fuel cell industry, LiNa Energy maximizes safety, heat management, and energy density. Their battery cells feature thin planar ceramic electrolytes, enabling cost-efficient automated manufacturing and reducing the need for extensive thermal management systems. This streamlined approach offers both enhanced performance and cost-effectiveness.

ETS: What are the commercialization plans and target markets for LiNa Energy?

WT: LiNa Energy strategically targets markets with high solar potential, such as India, where the demand for storage solutions arises due to the growing deployment of renewables and the need to shift energy to peak demand periods. LiNa Energy aims to demonstrate the effectiveness of their systems through pilot projects at distribution scale by the end of the year. Leveraging partnerships and strong relationships with key players in the energy industry, LiNa Energy envisions gradual growth in manufacturing capacity worldwide. By offering competitive pricing, they aim to disrupt the market and drive widespread adoption of their innovative battery technology.

As the energy landscape continues to evolve, LiNa Energy's pursuit of affordable, long-duration energy storage technology stands out as a potential game-changer. With their unique chemistry, ceramic advancements, and focus on commercialization in markets with enormous renewable energy potential, LiNa Energy demonstrates a commitment to addressing the world's energy challenges. By challenging the status quo of traditional energy storage systems, LiNa Energy paves the way for a future where efficient and sustainable energy solutions become the norm.

———

This conversation has been edited for brevity and clarity. Click here to listen to the full episode.

Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

Trending News

A View From HETI

The USDA has announced a $1.4 billion investment to transition San Miguel Electric Cooperative in rural South Texas to a 600-megawatt solar and battery energy system, aiming to reduce climate pollution and create jobs by 2027.

The United States Department of Agriculture recently announced that San Miguel Electric Cooperative Inc., located in Christine, Texas, in Atascosa County, just outside of San Antonio, will transition its operations to produce 600 megawatts of energy using solar panels and a battery energy storage system (BESS).

The project is expected to reduce climate pollution by 1.8 tons annually, equivalent to removing 446,000 cars from the road each year, says USDA.

The project with the San Miguel Electric Cooperative plans to use more than $1.4 billion investment to procure 600 megawatts of renewable energy through solar voltaic panels and a battery energy storage system to power 47 counties across rural South Texas. The clean project also hopes to support as many as 600 jobs.

This is part of the over $4.37 billion in clean energy investments through the United States Department of Agriculture’s (USDA) Empowering Rural America (New ERA) Program, which has rural electric cooperatives supporting the economy via job creation, lowering electricity costs for businesses and families and reducing climate pollution. The New ERA was made possible by President Joe Biden’s Inflation Reduction Act, which was the largest investment in rural electrification since President Franklin Delano Roosevelt signed the Rural Electrification Act into law in 1936.

San Miguel plans to convert its operations to a 400-megawatt solar generation facility and 200-megawatt battery storage facility, and the transition should be complete by 2027. Currently, San Miguel produces 391 megawatts of electricity through a contract with South Texas Electric Cooperative (STEC).

“USDA is committed to enhancing the quality of life and improving air and water in our rural communities,” Secretary Tom Vilsack says in a news release. “The Inflation Reduction Act’s historic investments enable USDA to partner with rural electric cooperatives to strengthen America’s energy security and lower electricity bills for hardworking families, farmers and small business owners.”

Trending News