Amperon CEO Sean Kelly discuss the AI revolution in energy forecasting. Photo via LinkedIn

“Forecasting isn’t just about demand anymore—it’s about net demand, accounting for the variability of renewables like wind and solar.”

This insight from Sean Kelly, co-founder and CEO of Amperon, captures the seismic shift occurring in energy forecasting. With renewables surging, grid dynamics growing more complex, and demand more unpredictable than ever, the stakes have never been higher.

On a recent Energy Tech Startups Podcast, Kelly breaks down how Amperon’s AI-driven platform is transforming the way energy providers anticipate demand, mitigate risk, and embrace renewables. Named one of the Top 50 AI Companies in the U.S. by Andreessen Horowitz, Amperon is pushing the boundaries of what’s possible in energy technology.

Here’s a closer look at Kelly’s journey, the challenges he’s tackling, and the insights driving Amperon’s success.

What problem is Amperon solving?

Why does the energy sector need better forecasting now?
The energy grid is evolving at lightning speed. With 25 gigawatts of wind and 20 gigawatts of solar in Texas alone, the focus has shifted from simple demand forecasting to net demand forecasting. It’s not just about predicting how much electricity people will use—it’s about understanding how renewables will interact with that demand.

For example, if it’s a windy day in Texas, prices drop, and the grid behaves very differently. Accurate forecasting helps providers mitigate risk, plan ahead, and prevent costly errors in buying or selling electricity.

The Amperon approach: Why AI is essential

What sets Amperon’s technology apart?
Our models retrain every hour—not every month or even daily. Since launching in 2018, we’ve been continuously learning and adapting to the grid’s behavior. This is critical because the energy sector’s complexity is increasing every day.

We also leverage data from over 10 million meters across the U.S. and Europe, giving us unmatched insights into both individual assets and entire markets. Our tech isn’t about static solutions; it’s dynamic, evolving alongside the grid.

Building for scale: A strategic playbook

How has Amperon scaled from a Houston startup to a global player?
It starts with focus. We began with a clear problem: helping Texas retailers manage risk in a deregulated market. From there, we expanded into other customer segments—traders, public utilities, independent power producers, and more.

Partnerships have been key, too. For example, Microsoft has been instrumental in connecting us with utilities through the Azure marketplace. These collaborations not only enhance credibility but also streamline access to new customers.

The Case for Better AI in Energy

Kelly believes the energy industry is overdue for a technological overhaul. While legacy companies rely on outdated models, Amperon is built on cloud-native AI systems that can handle today’s complexity.

“The challenge isn’t just predicting demand—it’s adapting to constant change,” Kelly says. “Legacy systems weren’t built for this level of complexity. AI that learns every hour is no longer optional—it’s essential.”

Lessons for Entrepreneurs

  1. Stay Customer-Centric: Amperon’s early success came from solving a clear, urgent need for Texas energy retailers. “Product-market fit is everything,” Kelly emphasizes.
  2. Invest in Talent: By hiring data scientists from top companies like Google and Meta, Amperon has built a team capable of tackling the hardest problems.
  3. Leverage Partnerships: Collaborations with players like Microsoft have amplified Amperon’s reach and trust in the market.

What’s next for Amperon?

With over $30 million raised and a rapidly growing global presence, Amperon is doubling down on innovation. The company plans to expand its asset-level forecasting capabilities and deepen its presence in international markets.
“The energy transition is running through Houston,” Kelly says. “This city has the talent, the capital, and the expertise to lead the way.”

Listen to the full episode with Sean Kelly on the Energy Tech Startups Podcast here.

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


In a recent Energy Tech Startups Podcast episode, Cindy Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Photo courtesy of Sage

Houston founder on driving the future of geothermal energy, storage

now streaming

Cindy Taff, co-founder and CEO of Sage GeoSystems, has emerged as a visionary leader in the energy transition, recently named to Time magazine’s 100 Most Influential Climate Leaders in Business for 2024. Under her leadership, Sage is not only advancing geothermal energy innovation but also redefining how energy storage can support a renewable-powered grid.

In a recent Energy Tech Startups Podcast episode, Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Her insights reflect the unique perspective of a founder bridging oil and gas expertise with renewable energy innovation.

- YouTubeCindy shares how Sage Geosystems is leveraging its oil and gas expertise to develop groundbreaking subsurface pumped hydro ...

Breaking Boundaries with Geopressured Geothermal Systems

Sage GeoSystems is at the forefront of next-generation geothermal energy, advancing Geopressured Geothermal Systems (GGS) that can be deployed in a wide range of geographies. Unlike traditional geothermal systems, which rely on natural water reservoirs near volcanic activity, Sage’s engineered reservoirs allow geothermal energy to be tapped almost anywhere.

“Geothermal energy is no longer restricted to specific conditions,” Taff explained. “Our systems are flexible, scalable, and capable of meeting the needs of energy-intensive applications like data centers—including a recent deal with Meta to deliver 150 megawatts of geothermal power for their facilities.”

This adaptability sets Sage apart, offering a path to reliable, clean energy that can complement intermittent sources like wind and solar. Sage also secured a win in the Energy Transition Business category alongside notable finalists like Amperon and Tierra Climate, underscoring its leadership in innovative energy solutions.

Pivoting Toward Subsurface Energy Storage

While initially focused solely on geothermal, Sage uncovered a transformative opportunity in subsurface pumped hydro energy storage during field trials. Dubbed “upside-down pumped hydro,” the solution provides long-duration energy storage capable of balancing the grid for 17+ hours—far surpassing the capabilities of lithium-ion batteries for extended periods.

“Pumped storage hydropower is a critical piece of the energy puzzle,” Taff emphasized. By storing energy during off-peak times and releasing it when solar and wind aren’t producing, Sage is helping bridge the intermittency gap in renewables. This approach positions pumped storage as a game-changer for a reliable, clean energy grid.

Lessons from the Founder’s Journey

Taff’s transition from a 35-year career at Shell to geothermal entrepreneurship offers valuable lessons for founders in capital-intensive industries:

  1. Leverage Expertise, but Stay Open to New Solutions:
    Taff’s oil and gas background enabled her to approach geothermal with deep technical knowledge, but Sage’s pivot to energy storage illustrates the importance of staying adaptable during development.
  2. Educate Financial Stakeholders:
    Securing funding for hard tech remains a challenge. “Investors often lack the subsurface knowledge needed to understand our technology,” Taff explained. She emphasized the need to bring on team members who can translate technical innovation into financial terms.
  3. Be Ready for Capital-Intensive Scaling:
    With geothermal plants costing millions to build, startups must carefully manage capital and timelines. Taff encourages founders to seek strategic investors, like Chesapeake Energy, who understand the challenges and potential of scaling infrastructure.

Beyond Geothermal: A Call for Pumped Storage Hydropower

In addition to geothermal, Taff champions pumped storage hydropower as an underutilized climate solution. “While lithium-ion batteries get a lot of attention, pumped storage hydropower offers long-duration storage that can stabilize the grid for days, not just hours,” she said.

By storing excess energy during off-peak times and releasing it when solar and wind aren’t producing, pumped storage hydropower can play a critical role in balancing renewables. Sage GeoSystems is uniquely positioned to integrate this technology into a broader energy strategy, offering sustainable and scalable solutions for energy-intensive industries.

A Vision for Geothermal and the Energy Transition

Looking ahead, Taff sees geothermal energy and storage as critical components of a sustainable energy mix. “We’re still in the early stages, but geothermal is following a trajectory similar to wind and solar 15 years ago,” she said. Sage’s innovative approaches are paving the way for geothermal to become a scalable, competitive solution, capable of powering industries and data centers while providing energy storage that stabilizes the grid.

With her recognition by Time magazine and a recent deal with Meta, Sage GeoSystems is proving that geothermal energy can be a powerful ally in achieving global decarbonization goals. The company’s innovative Geopressured Geothermal Systems and subsurface storage solutions are laying the groundwork for a reliable and sustainable energy future.

Listen to the full episode with Cindy Taff on the Energy Tech Startups Podcast here.

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Through Dsider’s techno-economic analysis platform, Sujatha Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence. Photo via LinkedIn

Podcast: How this Houston energy tech startup transforms innovation into scalable success

now streaming

What if the future of clean energy wasn’t just about invention, but execution? For Sujatha Kumar, CEO of Dsider, success in clean tech hinges on more than groundbreaking technology—it’s about empowering founders with the tools to make their innovations viable, scalable, and economically sound.

Through Dsider’s techno-economic analysis (TEA) platform, Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence.

In a recent episode of the Energy Tech Startups Podcast, Kumar shared her insights on the growing importance of TEA in the hard tech space. While clean energy innovation promises transformative solutions, the challenge lies in proving both technical feasibility and economic sustainability. Kumar argues that many early-stage founders, especially in fields like carbon capture, microgrids, and renewable energy, lack the necessary financial tools to assess market fit and long-term profitability—a gap Dsider aims to fill.

What Makes Dsider Unique?

Dsider offers more than just financial modeling—it creates actionable insights, tailored to the demands of the clean energy sector. At its core, the platform integrates TEA with operational planning, equipping founders with the ability to run scenario analyses, optimize pricing strategies, and anticipate market challenges. “It’s not just about building a product—it’s about understanding how to make that product thrive in a dynamic, ever-evolving market,” Kumar explained.

In industries where data is limited and stakes are high, startups often struggle to translate early pilots into scalable solutions. Kumar emphasized how Dsider’s approach helps founders forecast regulatory shifts, project downtime risks, and identify key economic drivers—turning complex calculations into a clear strategic roadmap. This foresight enables startups to align with customer expectations and investor requirements from the outset, a step that is often overlooked in early development stages.

Why TEA is Critical for Founders

“Clean tech innovation is hard,” Kumar emphasized, “because there is no historical data to guide decisions.” Startups often operate in unfamiliar territory, where understanding market fit and pricing models is essential. Through TEA, founders can build a financial narrative, simulate real-world conditions, and show investors or customers how their solutions will perform.

Jason, an experienced founder, echoed this sentiment, reflecting on his own mistakes:

"I wish I’d done a TEA earlier—during my first pilot, we didn’t budget for enough support, and it cost us a key customer."

The takeaway? Even at the pilot stage, TEA is invaluable. As Kumar noted, failing early pilots can prevent startups from scaling—making upfront analysis essential for success.

Beyond Technology: Bridging Gaps Between Founders, Investors, and Customers

Kumar highlighted the need to align founders, investors, and customers through a shared understanding of value. TEA enables this by allowing founders to communicate in the same language as their stakeholders—from efficiency gains to regulatory compliance. Dsider's platform provides tools for scenario modeling, allowing startups to optimize for both technology performance and economic outcomes.

One challenge, she noted, is that many founders are scientists without financial backgrounds. “Our goal is to simplify that complexity, so founders can focus on their technology while we take care of the analysis,” Kumar explained. Dsider helps startups anticipate questions from investors, simulate risks, and optimize business models from the start.

A New Way to Sell: Using TEA as a Business Development Tool

Kumar described how TEA can be more than a financial tool—it can become a business development asset. Founders can use Dsider to create customized reports for potential customers, demonstrating the specific value their technology brings. With interactive models and scenario analysis, startups can quickly respond to customer needs and build trust through transparency.

Future Growth

Looking ahead, Dsider aims to scale its operations and expand its impact by continuing to support early-stage founders with affordable, high-impact tools. With growing regulatory support for clean tech and an increasing demand for sustainable solutions, Dsider is positioned to become a key player in the energy tech startup ecosystem.

By bridging the gap between innovation and economics, Dsider is helping founders navigate complex challenges and build businesses that are both profitable and impactful—setting a strong foundation for future growth in the climate tech space.

Listen to the full episode with Sujatha Kumar on the Energy Tech Startups Podcast here.

———

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.
The conversation with Jason Beck of ZettaWatts offers a glimpse into the exciting world of energy transition.

Houston energy tech founder envisions enhanced clean energy marketplace

Q&A

For Jason Beck, a cleaner future is personal. That's why his company, ZettaWatts, is making clean energy more affordable and available.

In this Energy Tech Startups episode, we dive deep into the world of energy transition technologies with Beck from ZettaWatts. Jason shares his unique perspective on the evolving energy landscape, the importance of climate journeys, and the innovative solutions ZettaWatts is bringing to the table.



The conversation with Beck offers a glimpse into the exciting world of energy transition. As we move towards a more sustainable future, it's essential to stay informed and engaged with the latest developments in the sector.

Energy Tech Startups: What is ZettaWatts' primary mission in the energy transition landscape?

Jason Beck: ZettaWatts is deeply committed to enabling energy transition technologies to reach the market and improve their financial viability. The company's primary goal is to bridge the gap between groundbreaking technologies and the financial structures that support them. By doing so, they hope to accelerate the adoption of sustainable energy solutions.

ETS: You mentioned the importance of individual "climate journeys." Can you elaborate on this concept?

JB: Absolutely. A climate journey refers to an individual's evolving understanding and commitment to sustainability and climate action. It's a personal path that often starts with a growing awareness of environmental issues and culminates in concrete actions to address them. My own journey began with a realization of the pressing need for collective action against climate change. It's essential for everyone to embark on their climate journey, as it fosters a sense of responsibility and drives impactful change.

ETS: Houston is emerging as a hub for energy transition. What makes the city stand out in this regard?

JB: Houston's energy ecosystem is vibrant and diverse. Historically known for its oil and gas industry, the city is now embracing renewable energy and sustainable solutions. This shift is evident in the increasing number of startups, research institutions, and established companies focusing on green energy in the region. The collaborative spirit and wealth of resources make Houston an ideal place for companies like ZettaWatts to thrive.

ETS: How does ZettaWatts differentiate itself as a market maker in the energy sector?

JB: Unlike traditional bilateral markets, ZettaWatts operates as a market maker by aggregating demand and supply. This unique approach allows for instant diversification, reducing risks for both buyers and sellers. By acting as a central hub, ZettaWatts can efficiently match renewable energy projects with interested investors, streamlining the process and ensuring optimal outcomes for all parties involved.

ETS:  Decarbonization by 2050 is a significant goal. How do you see renewable energy playing a role in achieving this target?

JB: Renewable energy is pivotal in addressing the carbon problem. To achieve decarbonization by 2050, we need a comprehensive plan, and renewable energy sources like wind, solar, and hydro play a crucial role in this roadmap. I highly recommend the book "Speed and Scale" as it provides a master plan for this ambitious goal. With the right strategies and collective effort, I believe we can create a sustainable future.

———

This conversation has been edited for brevity and clarity. Click here to listen to the full episode.

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future. Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

Manas Pathak's insights offer a glimpse into the future of energy storage and the innovations that companies like Earthen are bringing to the table. Photo via earthen.energy

Q&A: The breakthrough energy tech that could replace batteries forever

now streaming

In the rapidly evolving world of energy technology, few innovations hold as much promise as the solutions being developed by Earthen.

We recently had the opportunity to sit down with Manas Pathak, the CEO and co-founder of Earthen, to delve into the company's groundbreaking thermo-mechanical energy storage system. In this Q&A, we explore the core of Earthen's technology, its potential impact on the energy sector, and what the future holds.

Manas Pathak's insights offer a glimpse into the future of energy storage and the innovations that companies like Earthen are bringing to the table. As the energy sector continues to evolve, solutions like these will play a pivotal role in shaping a sustainable future.

Energy Tech Startups: Can you explain the unique approach Earthen takes with its thermo-mechanical energy storage using supercritical CO2?

Manas Pathak: Certainly. At Earthen, we've developed a thermo-mechanical energy storage solution that leverages supercritical CO2. This phase of CO2, achieved at high pressures and temperatures, behaves both as a liquid and a gas. It's central to our technology, offering a compact, safe, and cost-effective solution for long-duration energy storage. Think of it as a modern take on compressed air storage but using CO2 for superior results.

Q: With so many energy storage solutions emerging, what sets Earthen's system apart in terms of efficiency?

MP: Our system boasts a competitive round-trip efficiency of 78%, which is quite remarkable. To put it in perspective, this efficiency rivals that of lithium-ion batteries. The use of supercritical CO2 is central to achieving this efficiency, allowing us to harness its unique properties for optimal energy storage and retrieval.

Q: How does Earthen's technology integrate with existing infrastructure, like pipelines?

MP: One of the exciting applications of our technology is its ability to retrofit pipelines, converting them into energy storage assets. This means that existing infrastructure, like pipelines initially designed for other purposes, can be repurposed and utilized for energy storage, maximizing the use of resources and reducing the need for new constructions.

Q: What are Earthen's plans for the future, especially in terms of product launches and market presence?

MP: We're quite ambitious about our roadmap. We aim to launch our first commercial product by 2026-2027. As for our market strategy, we're targeting a diverse range of customer segments, from utility-scale energy storage to commercial-industrial spaces. Our mission is to democratize access to clean energy on a global scale, and we're taking concrete steps to realize that vision.

Q: Lastly, what inspired the creation of Earthen and its focus on equitable energy distribution?

MP: Growing up in India, I witnessed firsthand the disparities in energy consumption. The smallest homes often faced the longest power outages. This early realization highlighted the need for equitable energy distribution. At Earthen, our end goal is to see clean electrons reaching every corner of the globe, ensuring that everyone has access to reliable and sustainable energy.

———

This conversation has been edited for brevity and clarity. Click here to listen to the full episode.

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future. Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

At last year's awards program, Cemvita Factory's co-founders, Tara and Moji Karimi, accepted the award for the Green Impact Business category. This year, Moji Karimi served as a judge

18 Houston energy startups named finalists for innovation awards program

companies to watch

The 2023 Houston Innovation Awards announced its 52 finalists — a large portion of which are promising energy transition startups.

The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — will name its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community.

The following startups, which all have an energy transition element to their business, received a finalist position in one or two categories.

Click here to secure your tickets to see who wins.

  • ALLY Energy, helping energy companies and climate startups find, develop, and retain great talent, scored two finalist positions — one in the Female-Owned Business category and the other in the Social Impact Business category.
  • Eden Grow Systems, next generation farming technologies, is a finalist in the People's Choice: Startup of the Year category.
  • Feelit Technologies, nanotechnology for preventive maintenance to eliminate leaks, fires and explosions, increase safety and reduce downtime, is a finalist in the Female-Owned Business category and the People's Choice: Startup of the Year category.
  • Fervo Energy, leveraging proven oil and gas drilling technology to deliver 24/7 carbon-free geothermal energy, scored two finalist positions — one in the Sustainability Business category and the other in the People's Choice: Startup of the Year category.
  • FluxWorks, making frictionless gearboxes for missions in any environment, is a finalist in the Hardtech Business category.
  • Helix Earth Technologies, decarbonizing the built environment and heavy industry, is a finalist in the Hardtech Business category.
  • INOVUES, re-energizing building facades through its non-invasive window retrofit innovations, making building smarter, greener, and healthier for a better and sustainable future, was named a finalist in the Sustainability Business category.
  • Kanin Energy, helping heavy industry monetize their waste heat and decarbonize their operations, was named a finalist in the BIPOC-Owned Business and the Sustainability Business categories.
  • Mars Materials, developing a carbon-negative pathway for carbon fiber and acrylamide production using CO2 and biomass as raw materials, is a finalist in the BIPOC-Owned Business category.
  • Molecule, an energy/commodity trading risk management software that provides users with an efficient, reliable, responsive platform for managing trade risk, is a finalist in the Digital Solutions Business category.
  • Rhythm Energy, 100 percent renewable electricity service for residential customers in Texas, is a finalist in the People's Choice: Startup of the Year category.
  • Sage Geosystems, a cost-effective geothermal baseload energy solution company, also innovating underground energy storage solutions, was named a finalist in the Sustainability Business category.
  • Solugen, decarbonizing the chemical industry, is a finalist in the Hardtech Business category.
  • Square Robot, applying robotic technology to eliminate the need to put people into dangerous enclosed spaces and eliminate taking tanks out of service, is a finalist in the Hardtech Business category.
  • Syzygy Plasmonics, a deep decarbonization company that builds chemical reactors designed to use light instead of combustion to produce valuable chemicals like hydrogen and sustainable fuels, is a finalist in the Hardtech Business category.
  • Tierra Climate, decarbonizing the power grid faster by helping grid-scale batteries monetize their environmental benefits and change their operational behavior to abate more carbon, was named a finalist in the Sustainability Business category.
  • Utility Global, a technology company converting a range of waste gases into sustainable hydrogen and syngas, was named a finalist in the Sustainability Business category.
  • Venus Aerospace, a hypersonics company on track to fly reusable hypersonic flight platforms by 2024, is a finalist in the Hardtech Business category.

Additionally, two energy companies were named to the Corporate of the Year category, which honors corporations that supports startups and/or the Houston innovation community. Aramco Ventures and Chevron Technology Ventures are two of the four finalists in this category.

Lastly, Jason Ethier, co-founder of Lambda Catalyzer and host of the Energy Tech Startups podcast, and Kendrick Alridge, senior manager of community at Greentown Labs, scored finalist positions in the Ecosystem Builder category, as individuals who have acted as leaders in developing Houston’s startup ecosystem.

Click here to see the full list of finalists.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.

Houston clean energy pioneer earns prestigious Welch Foundation award

Awards Season

A Rice University professor has earned a prestigious award from the Houston-based Welch Foundation, which supports chemistry research.

The foundation gave its 2025 Norman Hackerman Award in Chemical Research to Haotian Wang for his “exceptionally creative” research involving carbon dioxide electrochemistry. His research enables CO2 to be converted into valuable chemicals and fuels.

The award included $100,000 and a bronze sculpture.

“Dr. Wang’s extensive body of work and rigorous pursuit of efficient electrochemical solutions to practical problems set him apart as a top innovator among early-career researchers,” Catherine Murphy, chairwoman of the foundation’s Scientific Advisory Board, said in a news release.

Wang is an associate professor in the Department of Chemical and Biomolecular Engineering at Rice. The department’s Wang Group develops nanomaterials and electrolyzers for energy and environmental uses, such as energy storage, chemical and fuel generation, green synthesis and water treatment.

Wang also is co-founder of Solidec, a Houston startup that aims to turn his innovations into low-carbon fuels, carbon-negative hydrogen and carbon-neutral peroxide. The startup extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions.

Solidec has been selected for Chevron Technology Ventures’ catalyst program, a Rice One Small Step grant, a U.S. Department of Energy grant, and the first cohort of the Activate Houston program.

“Dr. Wang’s use of electrochemistry to close the carbon cycle and develop renewable sources of industrial chemicals directly intersects with the Welch Foundation mission of advancing chemistry while improving life,” Fred Brazelton, chairman and director of the Welch Foundation, said in the release.

Ramamoorthy Ramesh, executive vice president for research at Rice University, added: “We are proud to (Dr. Wang) at Rice. He’s using chemical engineering to solve a big problem for humanity, everything that the Welch Foundation stands for.”

Last year, the Hackerman Award went to Baylor College of Medicine's Livia Schiavinato Eberlin, who's known for her groundbreaking work in the application of mass spectrometry technologies, which are changing how physicians treat cancer and analyze tissues. Read more here.

Houston venture firm invests in Virginia fusion power plant company in collaboration with TAMU

fusion funding

Houston-based climate tech venture firm Ecosphere Ventures has partnered with Virginia Venture Partners and Virginia Innovation Partnership Corporation’s venture capital program to invest in Virginia-based NearStar Fusion Inc., which develops fusion energy power plants.

NearStar aims to use its proprietary plasma railgun technology to safely and affordably power baseload electricity on and off the power grid through a Magnetized Target Impact Fusion (MTIF) approach, according to a news release from the company.

NearStar’s power plants are designed to retrofit traditional fossil fuel power plants and are expected to serve heavy industry, data centers and military installations.

“Our design is well-suited to retrofit coal-burning power plants and reuse existing infrastructure such as balance of plant and grid connectivity, but I’m also excited about leveraging the existing workforce because you won’t need PhDs in plasma physics to work in our power plant,” Amit Singh, CEO of NearStar Fusion, said in a news release.

NearStar will also conduct experiments at the Texas A&M Hypervelocity Impact Laboratory (HVIL) in Bryan, Texas, on prototype fuel targets and evolving fuel capsule design. The company plans to publish the results of the experiments along with a concept paper this year. NearStar will work with The University of Alabama in Huntsville (UAH) to develop computer performance models for target implosions.

NearStar’s MTIF approach will utilize deuterium, which is a common isotope of hydrogen found in water. The process does not use tritium, which NearStar believes will save customers money.

“While avoiding tritium in our power plant design reduces scientific gain of the fusion process, we believe the vastly reduced system complexity and cost savings of eliminating complicated supply chains, regulatory oversight, and breeding of tritium allows NearStar to operate power plants more profitably and serve more customers worldwide, ”Douglas Witherspoon, NearStar founder and chief scientist, said in a news release.

Houston’s Ecosphere Ventures invests in climate tech and sustainability innovations from pre-seed to late-seed stages in the U.S. Ecosphere also supports first-time entrepreneurs and technical founders.