Planckton Data co-founders were recently featured on Energy Tech Startups Podcast. Courtesy photo

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Yao Huang is the guest on the latest episode of the Energy Tech Startups Podcast. Courtesy photo

Tech entrepreneur turned climate investor is on a mission to monetize carbon removal

now streaming

The climate conversation is evolving — fast. It’s no longer just about emissions targets and net-zero commitments. It’s about capital, infrastructure, and execution at industrial scale.

That’s exactly where Yao Huang operates. A seasoned tech entrepreneur turned climate investor, Yao brings sharp clarity to one of the biggest challenges in climate innovation: how do we fund and scale technologies that remove carbon without relying on goodwill or government subsidies?

In this episode of the Energy Tech Startups Podcast, Yao sits down with hosts Jason Ethier and Nada Ahmed for a wide-ranging conversation that redefines how we think about decarbonization. From algae-based photobioreactors that capture CO₂ at the smokestack, to financing models that mirror real estate and infrastructure—not venture capital—Yao lays out a case for why the climate fight will be won or lost on spreadsheets, not slogans.

Her message is as bold as it is practical: this isn’t about saving the planet for the sake of it. It’s about building profitable, resilient systems that scale. And Houston, with its industrial base and project finance expertise, is exactly the place to do it.

The 40-Gigaton Challenge—and a Pandemic Pivot

Yao’s entry into climate wasn’t part of a long-term plan. It was sparked by a quiet moment during the pandemic—and a book.

Reading How to Avoid a Climate Disaster by Bill Gates, she came to two uncomfortable realizations:

  1. The people in power don’t actually have this figured out, and
  2. She would be alive to suffer the consequences.

That insight jolted her out of the traditional tech world and into climate action. She studied at Stanford, surrounded herself with mentors, and began diving into early-stage climate deals. But she quickly realized that most of the solutions she was seeing were still years away from commercialization.

So she narrowed her focus: no R&D moonshots, no science experiments—just deployable solutions that could scale now.

Carbon Optimum: Where Algae Meets Infrastructure

That’s how she found Carbon Optimum, a company using algae photobioreactors to remove CO₂ directly from industrial emissions. Their approach is both elegant and economic:

  • Install algae reactors next to major emitters like coal and cement plants.
  • Feed the algae with flue gas, allowing it to absorb CO₂ in a controlled system.
  • Harvest the algae and convert it into valuable commodities like bio-oils, fertilizer, and food ingredients.

It’s a nature-based solution, enhanced by engineering.
One acre of tanks can capture emissions and generate profit—without subsidies.

“This is one of the few solutions I’ve seen that can scale profitably and quickly,” Yao says. “And we’re not inventing anything new—we’re just doing it better.”

The Real Problem? It’s Capital, Not Carbon

As an investor, Yao is blunt: most climate startups are misaligned with the capital markets.

They’re following a tech startup playbook—built for SaaS, not steel. But building climate infrastructure requires a completely different approach: project finance, blended capital, debt structures, carbon credit integration, and regulatory incentives.

“Climate tech is more like real estate or healthcare than software,” Yao explains. “You don’t raise six rounds of venture. You build a stack—grants, equity, debt, tax credits—and you structure your project like infrastructure.”

It’s not just theory. It’s exactly how Carbon Optimum is expanding—through partnerships, offtake agreements, and real-world deployments. And it’s why she believes many climate startups fail: they don’t speak the language of finance.

Houston’s Role in the Climate Capital Stack

For Yao, Houston isn’t just a backdrop—it’s a strategic asset.

The city’s deep bench of project finance professionals, commodity traders, lawyers, and infrastructure veterans makes it uniquely positioned to lead the deployment phase of climate solutions.

“We’ve been calling it the wrong thing,” she says. “This isn’t just about climate—it’s an energy transition. And Houston knows how to build energy infrastructure at scale.”

Still, she notes, the ecosystem needs to evolve. Less education, more execution. Fewer workshops, more closers.

“Houston could be the epicenter of this movement—if we activate the right people and get the right projects over the line.”

From Carbon Capture to Circular Economies

The potential applications of Carbon Optimum’s algae platform go beyond carbon capture. Because the output—algae biomass—can be converted into:

  • Renewable oil
  • High-efficiency fertilizers (critical in today’s geopolitically fragile supply chains)
  • Food ingredients rich in protein and nutrients
  • Even biochar, a highly stable form of carbon sequestration

It’s scalable, modular, and location-agnostic. In island nations, Yao notes, these systems can offer energy independence by turning waste CO₂ into local energy and fertilizer—without needing to import fuels or food.

“It’s not just emissions reduction. It’s economic sovereignty through circular systems.”

Doing, Not Just Talking

One of Yao’s key takeaways for founders? Don’t waste time. Climate startups don’t have the luxury of trial-and-error cycles stretched over years.

“Founders need to get real about what it takes to scale: talent, capital, storytelling, partnerships. If you’re not ready to do that, maybe you should be a CSO, not a CEO.”

She also points out that founders don’t need to hire everyone—they need to tap the right networks. And in cities like Houston, those networks exist—if you know how to motivate them.

“It takes a different kind of leadership. You’re not just raising money—you’re moving people.”

Why This Episode Matters

This conversation is for anyone who’s serious about scaling real solutions to the climate crisis. Whether you’re a founder navigating capital markets, an investor seeking return and impact, or a policymaker designing the frameworks — Yao Huang offers a grounded, urgent, and actionable perspective.

It’s not about hope. It’s about execution.

Listen to the full episode of the Energy Tech Startups Podcast with Yao Huang:


--
Hosted by
Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Stephen Ojji is rethinking workplace safety. Courtesy photo

Podcast: How AI-powered detection can prevent workplace accidents before they happen

now streaming

Workplace safety has always been reactive. Incidents happen, reports are filed, lessons are learned — sometimes too late. But what if safety wasn’t about reacting to accidents, but preventing them altogether?

In this episode of the Energy Tech Startups Podcast, Stephen Ojji, founder and CEO of VisionTech, challenges how high-hazard industries approach safety. His vision? AI-driven incident detection that doesn’t just monitor the workplace —i t actively prevents injuries, ensures compliance, and builds a stronger safety culture.

From Oil and Gas Safety to AI Innovation

Stephen’s journey into energy tech isn’t what you’d expect. Starting as a safety engineer in Nigeria’s oil and gas sector, his early career was focused on ensuring compliance, training teams, and reducing workplace risks. But he quickly realized a flaw in the system — many incidents weren’t being reported at all.

"Workers don’t always report hazards, and not because they don’t care," he explains. "Sometimes it’s fear of consequences. Sometimes it’s just human nature — we’re focused on getting the job done. But ignoring small risks leads to big accidents."

That’s where VisionTech’s AI-powered safety monitoring system comes in. Instead of relying on human reporting, VisionTech integrates with existing workplace cameras, using computer vision technology and AI to detect:

  • Spills, fire hazards, and safety violations in real-time
  • Workers at risk of injury due to incorrect lifting techniques or missing PPE
  • Trends in safety culture, helping companies address recurring risks

"Think of it like having an extra set of eyes that never blinks," Stephen says. "Not to police workers, but to protect them."

AI and Safety: Moving Beyond Compliance to Prevention

Unlike traditional workplace monitoring, VisionTech’s AI safety system doesn’t track individuals — it tracks behaviors. The system uses ghosting technology, ensuring that workers’ identities remain anonymous while hazards are flagged instantly.

This shifts the focus from penalizing mistakes to empowering safer work environments.

"Companies say they care about safety, but what does that really mean?" Stephen challenges. "If safety is the priority, why not use every tool available to protect workers before an accident happens?"

And here’s the kicker: VisionTech doesn’t just detect risks. It helps companies act on them.

Instead of logging safety incidents in spreadsheets that go unread, the system transforms safety data into actionable insights — identifying patterns, trends, and areas for improvement that help companies make real, lasting changes.

Why Now? The Urgency for Smarter Safety Solutions

With OSHA regulations tightening and ESG commitments pushing for stronger worker protections, industrial companies are under growing pressure to do more than just meet compliance standards.

At the same time, AI and machine learning have advanced rapidly, making AI-powered safety monitoring more affordable, scalable, and accurate than ever before.

"If we had tried to build this 10 years ago, it wouldn’t have worked," Stephen admits. "The technology wasn’t ready. The market wasn’t ready. But today? It’s the right time, and the right tool for a problem that’s been ignored for too long."

What’s Next for VisionTech?

Currently in the MVP stage, VisionTech is preparing for pilot programs with oil and gas companies to prove its impact in real-world environments. The plan? Scale beyond oil and gas into manufacturing, construction, and any industry where safety matters.

But for Stephen, this isn’t just about launching another safety product — it’s about changing how companies think about protecting their workers.

"Safety isn’t just a compliance box to check," he says. "It’s about people. If companies really believe that ‘our employees are our greatest asset,’ then investing in their safety should be the easiest decision they ever make."

This is a conversation you don’t want to miss.

See the full episode with Stephen Ojji on the Energy Tech Startups Podcast below, or click here to listen.

———

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

Amperon CEO Sean Kelly discuss the AI revolution in energy forecasting. Photo via LinkedIn

Houston leader discusses the AI revolution in energy forecasting

now streaming

“Forecasting isn’t just about demand anymore—it’s about net demand, accounting for the variability of renewables like wind and solar.”

This insight from Sean Kelly, co-founder and CEO of Amperon, captures the seismic shift occurring in energy forecasting. With renewables surging, grid dynamics growing more complex, and demand more unpredictable than ever, the stakes have never been higher.

On a recent Energy Tech Startups Podcast, Kelly breaks down how Amperon’s AI-driven platform is transforming the way energy providers anticipate demand, mitigate risk, and embrace renewables. Named one of the Top 50 AI Companies in the U.S. by Andreessen Horowitz, Amperon is pushing the boundaries of what’s possible in energy technology.

Here’s a closer look at Kelly’s journey, the challenges he’s tackling, and the insights driving Amperon’s success.

What problem is Amperon solving?

Why does the energy sector need better forecasting now?
The energy grid is evolving at lightning speed. With 25 gigawatts of wind and 20 gigawatts of solar in Texas alone, the focus has shifted from simple demand forecasting to net demand forecasting. It’s not just about predicting how much electricity people will use—it’s about understanding how renewables will interact with that demand.

For example, if it’s a windy day in Texas, prices drop, and the grid behaves very differently. Accurate forecasting helps providers mitigate risk, plan ahead, and prevent costly errors in buying or selling electricity.

The Amperon approach: Why AI is essential

What sets Amperon’s technology apart?
Our models retrain every hour—not every month or even daily. Since launching in 2018, we’ve been continuously learning and adapting to the grid’s behavior. This is critical because the energy sector’s complexity is increasing every day.

We also leverage data from over 10 million meters across the U.S. and Europe, giving us unmatched insights into both individual assets and entire markets. Our tech isn’t about static solutions; it’s dynamic, evolving alongside the grid.

Building for scale: A strategic playbook

How has Amperon scaled from a Houston startup to a global player?
It starts with focus. We began with a clear problem: helping Texas retailers manage risk in a deregulated market. From there, we expanded into other customer segments—traders, public utilities, independent power producers, and more.

Partnerships have been key, too. For example, Microsoft has been instrumental in connecting us with utilities through the Azure marketplace. These collaborations not only enhance credibility but also streamline access to new customers.

The Case for Better AI in Energy

Kelly believes the energy industry is overdue for a technological overhaul. While legacy companies rely on outdated models, Amperon is built on cloud-native AI systems that can handle today’s complexity.

“The challenge isn’t just predicting demand—it’s adapting to constant change,” Kelly says. “Legacy systems weren’t built for this level of complexity. AI that learns every hour is no longer optional—it’s essential.”

Lessons for Entrepreneurs

  1. Stay Customer-Centric: Amperon’s early success came from solving a clear, urgent need for Texas energy retailers. “Product-market fit is everything,” Kelly emphasizes.
  2. Invest in Talent: By hiring data scientists from top companies like Google and Meta, Amperon has built a team capable of tackling the hardest problems.
  3. Leverage Partnerships: Collaborations with players like Microsoft have amplified Amperon’s reach and trust in the market.

What’s next for Amperon?

With over $30 million raised and a rapidly growing global presence, Amperon is doubling down on innovation. The company plans to expand its asset-level forecasting capabilities and deepen its presence in international markets.
“The energy transition is running through Houston,” Kelly says. “This city has the talent, the capital, and the expertise to lead the way.”

Listen to the full episode with Sean Kelly on the Energy Tech Startups Podcast here.

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


In a recent Energy Tech Startups Podcast episode, Cindy Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Photo courtesy of Sage

Houston founder on driving the future of geothermal energy, storage

now streaming

Cindy Taff, co-founder and CEO of Sage GeoSystems, has emerged as a visionary leader in the energy transition, recently named to Time magazine’s 100 Most Influential Climate Leaders in Business for 2024. Under her leadership, Sage is not only advancing geothermal energy innovation but also redefining how energy storage can support a renewable-powered grid.

In a recent Energy Tech Startups Podcast episode, Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Her insights reflect the unique perspective of a founder bridging oil and gas expertise with renewable energy innovation.

- YouTubeCindy shares how Sage Geosystems is leveraging its oil and gas expertise to develop groundbreaking subsurface pumped hydro ...

Breaking Boundaries with Geopressured Geothermal Systems

Sage GeoSystems is at the forefront of next-generation geothermal energy, advancing Geopressured Geothermal Systems (GGS) that can be deployed in a wide range of geographies. Unlike traditional geothermal systems, which rely on natural water reservoirs near volcanic activity, Sage’s engineered reservoirs allow geothermal energy to be tapped almost anywhere.

“Geothermal energy is no longer restricted to specific conditions,” Taff explained. “Our systems are flexible, scalable, and capable of meeting the needs of energy-intensive applications like data centers—including a recent deal with Meta to deliver 150 megawatts of geothermal power for their facilities.”

This adaptability sets Sage apart, offering a path to reliable, clean energy that can complement intermittent sources like wind and solar. Sage also secured a win in the Energy Transition Business category alongside notable finalists like Amperon and Tierra Climate, underscoring its leadership in innovative energy solutions.

Pivoting Toward Subsurface Energy Storage

While initially focused solely on geothermal, Sage uncovered a transformative opportunity in subsurface pumped hydro energy storage during field trials. Dubbed “upside-down pumped hydro,” the solution provides long-duration energy storage capable of balancing the grid for 17+ hours—far surpassing the capabilities of lithium-ion batteries for extended periods.

“Pumped storage hydropower is a critical piece of the energy puzzle,” Taff emphasized. By storing energy during off-peak times and releasing it when solar and wind aren’t producing, Sage is helping bridge the intermittency gap in renewables. This approach positions pumped storage as a game-changer for a reliable, clean energy grid.

Lessons from the Founder’s Journey

Taff’s transition from a 35-year career at Shell to geothermal entrepreneurship offers valuable lessons for founders in capital-intensive industries:

  1. Leverage Expertise, but Stay Open to New Solutions:
    Taff’s oil and gas background enabled her to approach geothermal with deep technical knowledge, but Sage’s pivot to energy storage illustrates the importance of staying adaptable during development.
  2. Educate Financial Stakeholders:
    Securing funding for hard tech remains a challenge. “Investors often lack the subsurface knowledge needed to understand our technology,” Taff explained. She emphasized the need to bring on team members who can translate technical innovation into financial terms.
  3. Be Ready for Capital-Intensive Scaling:
    With geothermal plants costing millions to build, startups must carefully manage capital and timelines. Taff encourages founders to seek strategic investors, like Chesapeake Energy, who understand the challenges and potential of scaling infrastructure.

Beyond Geothermal: A Call for Pumped Storage Hydropower

In addition to geothermal, Taff champions pumped storage hydropower as an underutilized climate solution. “While lithium-ion batteries get a lot of attention, pumped storage hydropower offers long-duration storage that can stabilize the grid for days, not just hours,” she said.

By storing excess energy during off-peak times and releasing it when solar and wind aren’t producing, pumped storage hydropower can play a critical role in balancing renewables. Sage GeoSystems is uniquely positioned to integrate this technology into a broader energy strategy, offering sustainable and scalable solutions for energy-intensive industries.

A Vision for Geothermal and the Energy Transition

Looking ahead, Taff sees geothermal energy and storage as critical components of a sustainable energy mix. “We’re still in the early stages, but geothermal is following a trajectory similar to wind and solar 15 years ago,” she said. Sage’s innovative approaches are paving the way for geothermal to become a scalable, competitive solution, capable of powering industries and data centers while providing energy storage that stabilizes the grid.

With her recognition by Time magazine and a recent deal with Meta, Sage GeoSystems is proving that geothermal energy can be a powerful ally in achieving global decarbonization goals. The company’s innovative Geopressured Geothermal Systems and subsurface storage solutions are laying the groundwork for a reliable and sustainable energy future.

Listen to the full episode with Cindy Taff on the Energy Tech Startups Podcast here.

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Through Dsider’s techno-economic analysis platform, Sujatha Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence. Photo via LinkedIn

Podcast: How this Houston energy tech startup transforms innovation into scalable success

now streaming

What if the future of clean energy wasn’t just about invention, but execution? For Sujatha Kumar, CEO of Dsider, success in clean tech hinges on more than groundbreaking technology—it’s about empowering founders with the tools to make their innovations viable, scalable, and economically sound.

Through Dsider’s techno-economic analysis (TEA) platform, Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence.

In a recent episode of the Energy Tech Startups Podcast, Kumar shared her insights on the growing importance of TEA in the hard tech space. While clean energy innovation promises transformative solutions, the challenge lies in proving both technical feasibility and economic sustainability. Kumar argues that many early-stage founders, especially in fields like carbon capture, microgrids, and renewable energy, lack the necessary financial tools to assess market fit and long-term profitability—a gap Dsider aims to fill.

What Makes Dsider Unique?

Dsider offers more than just financial modeling—it creates actionable insights, tailored to the demands of the clean energy sector. At its core, the platform integrates TEA with operational planning, equipping founders with the ability to run scenario analyses, optimize pricing strategies, and anticipate market challenges. “It’s not just about building a product—it’s about understanding how to make that product thrive in a dynamic, ever-evolving market,” Kumar explained.

In industries where data is limited and stakes are high, startups often struggle to translate early pilots into scalable solutions. Kumar emphasized how Dsider’s approach helps founders forecast regulatory shifts, project downtime risks, and identify key economic drivers—turning complex calculations into a clear strategic roadmap. This foresight enables startups to align with customer expectations and investor requirements from the outset, a step that is often overlooked in early development stages.

Why TEA is Critical for Founders

“Clean tech innovation is hard,” Kumar emphasized, “because there is no historical data to guide decisions.” Startups often operate in unfamiliar territory, where understanding market fit and pricing models is essential. Through TEA, founders can build a financial narrative, simulate real-world conditions, and show investors or customers how their solutions will perform.

Jason, an experienced founder, echoed this sentiment, reflecting on his own mistakes:

"I wish I’d done a TEA earlier—during my first pilot, we didn’t budget for enough support, and it cost us a key customer."

The takeaway? Even at the pilot stage, TEA is invaluable. As Kumar noted, failing early pilots can prevent startups from scaling—making upfront analysis essential for success.

Beyond Technology: Bridging Gaps Between Founders, Investors, and Customers

Kumar highlighted the need to align founders, investors, and customers through a shared understanding of value. TEA enables this by allowing founders to communicate in the same language as their stakeholders—from efficiency gains to regulatory compliance. Dsider's platform provides tools for scenario modeling, allowing startups to optimize for both technology performance and economic outcomes.

One challenge, she noted, is that many founders are scientists without financial backgrounds. “Our goal is to simplify that complexity, so founders can focus on their technology while we take care of the analysis,” Kumar explained. Dsider helps startups anticipate questions from investors, simulate risks, and optimize business models from the start.

A New Way to Sell: Using TEA as a Business Development Tool

Kumar described how TEA can be more than a financial tool—it can become a business development asset. Founders can use Dsider to create customized reports for potential customers, demonstrating the specific value their technology brings. With interactive models and scenario analysis, startups can quickly respond to customer needs and build trust through transparency.

Future Growth

Looking ahead, Dsider aims to scale its operations and expand its impact by continuing to support early-stage founders with affordable, high-impact tools. With growing regulatory support for clean tech and an increasing demand for sustainable solutions, Dsider is positioned to become a key player in the energy tech startup ecosystem.

By bridging the gap between innovation and economics, Dsider is helping founders navigate complex challenges and build businesses that are both profitable and impactful—setting a strong foundation for future growth in the climate tech space.

Listen to the full episode with Sujatha Kumar on the Energy Tech Startups Podcast here.

———

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Hobby debuts solar canopy as airport system reaches new sustainability milestone

solar solutions

Houston's William P. Hobby Airport is generating its own clean energy.

Houston Aiports announced that Hobby's red garage is now home to a "solar canopy" that is producing energy at 100 percent capacity to power daily operations. The photovoltaic (PV) solar system generated more than 1.1 gigawatt-hours of electricity in testing, and is expected to produce up to 1 megawatt-hour now that it's operating at full power.

“This project is proof that sustainability can be practical, visible and directly tied to the passenger experience,” Jim Szczesniak, director of aviation for Houston Airports, said in a news release. “Passengers now park under a structure that shields their cars from the Texas sun while generating clean energy that keeps airport operations running efficiently, lowering overall peak demand electrical costs during the day and our carbon footprint. It’s a win for travelers, the city and the planet.”

The project was completed by Texas A&M Engineering Experiment Station (TEES) and CenterPoint Energy. It's part of Houston Airport's efforts to reduce carbon emissions by 40 percent over its 2019 baseline.

In a separate announcement, the airport system also shared that it recently reached Level 3 in the Airports Council International (ACI) Airport Carbon Accreditation program after reducing emissions by 19 percent in three years. This includes reductions at George Bush Intercontinental Airport (IAH), Hobby and Ellington Airport/Houston Spaceport.

The reductions have come from initiatives such as adding electric vehicles to airport fleets, upgrading airfield lighting with LED bulbs, adding smarter power systems to terminals, and improving IAH's central utility plant with more efficient equipment. Additionally, the expansion to Hobby's West Concourse and renovations at IAH Terminal B incorporate cleaner equipment and technology.

According to Houston Airports, from 2019 to 2023:

  • IAH reduced emissions by 17 percent
  • Hobby reduced emissions by 32 percent
  • Ellington Airport reduced emissions by 4 percent

"I see firsthand how vital it is to link infrastructure with sustainability,” Houston City Council Member Twila Carter, chair of the council’s Resilience Committee, said in the release. “Reducing carbon emissions at our airports isn’t just about cleaner travel — it’s about smarter planning, safer communities and building a Houston that can thrive for generations to come.”

Houston Methodist leader on the push for sustainable health care and new local event

Q&A

Every industry can play a role in the energy transition, and Houston Methodist is leading the charge in the health care sector.

Culminating at this week’s inaugural Green ICU Conference, part of Houston Energy and Climate Startup Week, the health care system has spent the last three years taking a closer look at its environmental footprint—and showing other hospital systems and medical organizations how they too can make simple changes to reduce emissions.

The event, held tomorrow, Sept. 17, at TMC Helix Park, will bring together health care professionals, industry leaders, policymakers and innovators to explore solutions for building a more sustainable healthcare system.

In an interview with EnergyCapital, Dr. Faisal N. Masud, medical director of critical care at Houston Methodist and a champion for sustainability efforts across the system, shares the inspiration behind the event and what attendees can expect to take away.

Tell us about how the Green ICU Conference came to be.

Houston Methodist’s inaugural Green ICU conference is about three years in the making. It originated because Houston Methodist recognized the significant impact health care has on sustainability and the lack of similar initiatives in the U.S.

The Center for Critical Care at Houston Methodist launched a sustainability-focused ICU initiative, published a roadmap and became involved in international efforts to develop guidelines that many other organizations now use. Our work led to the creation of the first Green ICU Collaborative in the country, and the Green ICU Conference was established to share best practices and address the global impact of critical care on the environment.

What were some of the biggest takeaways from the collaborative, and how are they represented in this new event?

Through the Green ICU Collaborative, we’ve seen that health care professionals can make a significant impact on sustainability through simple, practical changes, and many solutions can be implemented without major costs or compromising patient care. Additionally, there’s a strong link between environmental stewardship and patient safety and quality. These lessons will be represented in the new Green ICU Conference by showcasing easy-to-adopt best practices, emphasizing the importance of sustainability in daily health care operations, and fostering a sense of shared responsibility among attendees to improve both patient outcomes and environmental impact.

Why are ICUs considered to be such carbon hot spots?

ICUs are considered carbon hot spots because they care for the sickest patients, requiring intensive therapies, numerous medications and a large amount of equipment, such as ventilators and pumps. This makes them the most resource- and energy-intensive areas in a hospital. A single day in the ICU can have a greenhouse gas impact equivalent to driving a car 1,000 kilometers.

The U.S. health care sector is responsible for approximately 8.5 percent of greenhouse gas emissions, and hospitals are the second-most energy-intensive commercial buildings in the country. With the Texas Medical Center being in the heart of Houston, it’s critical that health care organizations play a role in this area.

That’s why the Center for Critical Care launched a system-wide Green ICU Initiative with the Houston Methodist Office of Sustainability to help reduce our carbon impact and waste while continuing to provide unparalleled patient care. Innovation is part of our culture, and that extends into our sustainability efforts. Houston Methodist’s Green ICU initiative is the first-of-its-kind in the U.S.

What efforts has Houston Methodist taken to cut emissions?

The first step to cutting emissions is measuring an organization’s carbon footprint to determine the best path forward. Houston Methodist’s Office of Sustainability has aggregated two years of baseline emissions data pending third-party validation. The hospital has taken several steps to cut emissions, including implementing composting programs, installing solar panels, improving energy utilization and participating in global plastic recycling initiatives. These efforts are part of a broader commitment led by our Office of Sustainability to reduce the hospital’s environmental footprint.

Tell us a little more about the event. Who should attend? What do you expect to be some of the highlights?

The Green ICU Conference, taking place during Houston Energy and Climate Week, is focused on health care sustainability, bringing together health care professionals, engineers, experts and anyone interested in reducing health care’s environmental impact. With participants and speakers from six countries, the conference brings together leading experts who aim to raise awareness, share best practices and offer practical, easy-to-adopt solutions for making health care more sustainable.

Highlights include perspectives from leading voices in health care sustainability, real-world examples of successful sustainability initiatives and opportunities for networking and collaboration. Anyone interested in health care, sustainability,or making a positive impact in their community should consider attending.

And, because of increasing interest, we’ve opened up the opportunity for attendees to join virtually at no cost or in person.

What do you hope attendees take away? What are your major goals for the event?

The main goals of hosting the Green ICU Conference for the first time are to raise awareness about the environmental impact of health care; engage and empower attendees to implement easy, practical sustainability solutions; and foster a sense of shared community and responsibility.

I hope attendees leave the event feeling motivated and equipped to make meaningful changes in their own practices, whether that’s improving patient care, supporting their colleagues, or leaving their organization and environment in a better place for future generations.

Texas House Democrats urge Trump administration to restore $250M solar grant

solar grants

Eight Democratic members of the U.S. House from Texas, including two from Houston, are calling on the Trump administration to restore a nearly $250 million solar energy grant for Texas that’s being slashed by the U.S. Environmental Protection Agency (EPA).

In a letter to Lee Zeldin, head of the EPA, and Russell Vought, director of the federal Office of Management and Budget (OMB), the House members urged the two officials to reinstate the nearly $250 million grant, which was awarded to Texas under the $7 billion Biden-era Solar for All program. The Texas grant was designed to assist 28,000 low-income households in installing solar panels, aiming to reduce their energy bills.

“This administration has improperly withheld billions in congressionally appropriated funding that was intended to benefit everyday Americans,” the letter stated.

The letter claimed that numerous court rulings have determined the EPA cannot repeal already allocated funding.

“Congress made a commitment to families, small businesses, and communities across this country to lower their utility bills and reduce harmful pollution through investments in clean energy. The Solar for All program was part of that commitment, and the EPA’s actions to rescind this funding effectively undermine that congressional intent,” the House members wrote.

The six House members who signed the letter are:

  • U.S. Rep. Sylvia Garcia of Houston
  • U.S. Rep. Al Green of Houston
  • U.S. Rep. Greg Casar of Austin
  • U.S. Rep. Jasmine Crockett of Dallas
  • U.S. Rep. Lloyd Doggett of Austin
  • U.S. Rep. Julie Johnson of Dallas
  • U.S. Rep. Marc Veasey of Fort Worth

The nearly $250 million grant was awarded last year to the Harris County-led Texas Solar for All Coalition.

In a post on the X social media platform, Zeldin said the recently passed “One Big Beautiful Bill” killed the Greenhouse Gas Reduction Fund, which would have financed the $7 billion Solar for All program.

“The bottom line is this: EPA no longer has the statutory authority to administer the program or the appropriated funds to keep this boondoggle alive,” Zeldin said.