Tyler Lancaster, a Chicago-based investor with Energize Capital, shares his investment thesis and why Houston-based Amperon caught his eye. Photo courtesy of Energize Capital

One of the biggest challenges to the energy transition is finding the funds to fuel it. Tyler Lancaster, partner at Energize Capital, is playing a role in that.

Energize Capital, based in Chicago, is focused on disruptive software technology key to decarbonization. One of the firm's portfolio companies is Amperon, which raised $20 million last fall.

In an interview with EnergyCapital, Lancaster shares what he's focused on and why Amperon caught Energize Capital's attention.

EnergyCapital: Energize Capital has been investing in climate tech for the better part of a decade now. What types of companies are you looking for and how are these companies’ technologies affecting the greater energy transition?

Tyler Lancaster: We partner with best-in-class innovators to accelerate the sustainability transition. This means identifying climate technology companies at various stages of maturity — from early commercialization to approaching the public markets — that we can help scale and realize their full potential. We invest in software-first climate technology businesses, with a focus on asset-light digital solutions that can help scale sustainable innovation and enable the new energy economy. Our portfolio currently drives software applications across renewable energy, industrial operations, electrification & mobility, infrastructure resilience, and decarbonization. We primarily focus on proven, commercially available and economically viable energy transition solutions (solar, wind, batteries, heat pumps, etc.). These solutions suffer from challenges related to efficient deployment or operations, where enabling digital platforms can play a key role in optimizing costs.

EC: Amperon is one of Energize Capital's portfolio companies. What made the company a great investment opportunity for Energize Capital?

TL: Accelerating the energy transition will require critical forecasting tools like what Amperon provides. This is underscored by the escalating impact of extreme weather events, increasing penetration of variable energy resources, like wind and solar, on the supply side, and surging demand growth driven by flexible loads and rapid electrification. We believe the need for Amperon’s platform will only continue to grow, and their increased raise from Series A to Series B showed they are scaling smartly. We’ve also known Sean Kelly, Abe Stanway, and the entire Amperon team for a long time, and building strong relationships with founders is how we like to do business. Amperon has built a blue-chip customer base in the energy sector in a very capital efficient manner, which is more important than ever for startups operating in the current equity market environment.

EC: One of the energy transition’s biggest problems is sourcing and storing reliable and affordable energy. What have you observed are the biggest problems with Texas’ electricity grid and what types of new tech can help improve these issues?

TL: Today’s electricity grid and the demands we’re putting on it look very different than they ever have. Major changes in climate and extreme weather show how perilous and unreliable the power grids in this country are, particularly in regions like Texas that don’t have the right infrastructure to shield grids from unusual temperatures — just look at the damage done by 2021’s historic Winter Storm Uri. And consumer demand for electricity is increasing as electrification accelerates globally. The makeup of the grid itself is shifting from centralized power plants to distributed clean energy assets like solar arrays and wind turbines, which brings issues of intermittent electricity production and no traditional way to forecast that.

Tech solutions like Amperon are the only way to navigate the nuances of the energy transition. With global net-zero goals and impending Scope II accounting, Amperon’s expertise in granular data management further enables companies to build accurate, dynamic forecasting models with smart meter data and get more visibility into anticipated market shifts so they can optimize their energy use — all of which helps to create a more resilient and reliable power grid.

EC: You are also on the board of the company, which recently announced a collaboration with Microsoft’s tech. What doors does this open for Amperon?

TL: Partnering with Microsoft and offering its energy demand forecasting solution on the Azure platform enables Amperon to better serve more companies that are navigating the energy transition and a rapidly evolving grid. Many power sector companies are also undergoing cloud migrations with Microsoft Azure having high market share. This partnership will specifically accelerate Amperon’s reach with utility customers, who typically have slower sales cycles but can greatly benefit from improved accuracy in energy demand forecasting and adoption of AI technologies.

EC: As a non-Texas investor, how do you see Houston and Texas-based companies’ investability? Has it changed over the years?

TL: While most tech startups are concentrated on the coasts and in Europe, we see Texas emerging as a hub for energy and climate focused startups due to its vicinity to energy giants, which represent potential customers. Texas leads the country in renewable energy production and sits at the forefront of the transition. Energy companies based in this region are relying on technology innovation and software tools to modernize operations and meet the evolving demands of their customers.

———

This conversation has been edited for brevity and clarity.

Will Tope, chief commercial officer of LiNa Energy, joined the Energy Tech Startups podcast to discuss the company's unique technology and growth plans. Photo via LinkedIn

Energy startup exec unveils breakthrough battery chemistry to revolutionize energy storage solutions

Q&A

In a world striving for sustainable and efficient energy solutions, United Kingdom-based LiNa Energy emerges as a promising player in the field of advanced battery technologies.

With a focus on overcoming the limitations of traditional lithium-ion batteries, LiNa Energy — a member of the 2023 cohort for Houston-based incubator, Halliburton Labs — presents a unique chemistry that holds the potential to revolutionize energy storage.

In a recent episode of Energy Tech Startups with Will Tope, chief commercial officer of LiNa Energy, we delve into the key aspects of LiNa Energy's technology, exploring the challenges they seek to address and their plans for commercialization.

Energy Tech Startups: What is the main problem that LiNa Energy is trying to solve with their battery technology?

Will Tope: LiNa Energy is driven by a pressing dilemma in today's storage landscape: the limited efficiency and high costs associated with existing storage technologies. They aim to bridge the gap, providing low-cost, long-duration energy storage solutions that can effectively accommodate the increasing penetration of renewable energy sources in power grids worldwide. By addressing this critical need, LiNa Energy aims to unlock the full potential of low-cost, low-carbon electrons for global energy consumption patterns.

ETS: How does LiNa Energy's battery technology differ from traditional lithium-ion batteries?

WT: LiNa Energy's technology distinguishes itself through its unique chemistry and progressive use of ceramics. By combining a stable sodium-based chemistry, developed in the 1970s, with advancements in ceramics from the fuel cell industry, LiNa Energy maximizes safety, heat management, and energy density. Their battery cells feature thin planar ceramic electrolytes, enabling cost-efficient automated manufacturing and reducing the need for extensive thermal management systems. This streamlined approach offers both enhanced performance and cost-effectiveness.

ETS: What are the commercialization plans and target markets for LiNa Energy?

WT: LiNa Energy strategically targets markets with high solar potential, such as India, where the demand for storage solutions arises due to the growing deployment of renewables and the need to shift energy to peak demand periods. LiNa Energy aims to demonstrate the effectiveness of their systems through pilot projects at distribution scale by the end of the year. Leveraging partnerships and strong relationships with key players in the energy industry, LiNa Energy envisions gradual growth in manufacturing capacity worldwide. By offering competitive pricing, they aim to disrupt the market and drive widespread adoption of their innovative battery technology.

As the energy landscape continues to evolve, LiNa Energy's pursuit of affordable, long-duration energy storage technology stands out as a potential game-changer. With their unique chemistry, ceramic advancements, and focus on commercialization in markets with enormous renewable energy potential, LiNa Energy demonstrates a commitment to addressing the world's energy challenges. By challenging the status quo of traditional energy storage systems, LiNa Energy paves the way for a future where efficient and sustainable energy solutions become the norm.

———

This conversation has been edited for brevity and clarity. Click here to listen to the full episode.

Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

research findings

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

Movers and shakers: Top executive moves in Houston energy transition of 2024

year in review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. From new board seats to internal promotions, this year marked a big one for some of Houston's energy leaders. Here were the top five most-read articles covering the mover and shaker news of 2024 — be sure to click through to read the full story.

Growing Houston biotech company expands leadership as it commercializes sustainable products

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Continue reading.

California geothermal co. grows C-suite, grows presence in Houston

XGS has leased 10,000 square feet of office space in Houston. Photo via Getty Images

A geothermal company with its headquarters in Palo Alto, California, has named new members of its C-suite and, at the same time, has expanded its operational footprint in Houston.

XGS Energy promoted Axel-Pierre Bois to CTO and Lucy Darago to chief commercial officer. Darago is based in Austin, and Bois, from France, lists his role as based in Houston on LinkedIn. Both have worked at XGS since February of last year.

“Axel and Lucy’s proven operational excellence and technical knowledge has helped propel XGS forward as we enter our next phase of growth,” Josh Prueher, CEO of XGS Energy, says in a news release. “I’m thrilled to have them both join XGS’ C-suite and have their support as we continue to grow our team, further advance our next-generation geothermal technology, and invest in our multi-gigawatt project pipeline.” Continue reading.

CenterPoint names 40-year industry veteran as exec for emergency response

Don Daigler will be tasked to lead CenterPoint Energy's yearly work in preparation for, response to and recovery from all emergencies, which includes both natural disasters and man-made events. Photo via CenterPoint Energy/LinkedIn

CenterPoint Energy announced the hiring of industry veteran Don Daigler as the new senior vice president of CenterPoint’s Emergency Preparedness and Response.

Daigler will be tasked to lead the company’s yearly work in preparation for, response to and recovery from all emergencies, which includes both natural disasters and man-made events. Daigler and his team will coordinate with all public safety partners.

“I’m pleased to join CenterPoint Energy and lead its Emergency Preparedness and Response team to transform how we prepare, mitigate and respond to the impacts of hurricanes, extreme weather and other emergencies,” Daigler says in a news release. ”The year-round work of our team will help position CenterPoint to deliver the service our customers expect and deserve before, during and after emergencies when the need is greatest.” Continue reading.

Houston private equity professional tapped to lead growth development at firm focused on decarbonization

Climate Investment announced Patrick Yip will lead the firm's growth investment strategy as managing director, head of growth. Photo via LinkedIn

A London-based energy transition investment firm has named a new Houston-based leader.

Climate Investment announced Patrick Yip will lead the firm's growth investment strategy as managing director, head of growth. In his new role, he will oversee the development of CI’s growth-stage portfolio, including deal sourcing, operational function of strategy, and working with the team that manages the firm's early-stage Catalyst program. He reports to the CEO, Pratima Rangarajan.

“We are excited to welcome Patrick to Climate Investment,” Rangarajan says in a news release. “The decarbonization investment opportunity continues to grow rapidly, and Patrick’s extensive experience will help us capitalize on that. He will also provide leadership and develop the market partnerships that will drive our growth investment strategy forward, playing a key role in supporting portfolio market adoption and accelerating the next stage of development for CI.” Continue reading.

Firm hires top Houston-based energy banker to grow energy transition team

Top Houston banker Stephen Trauber has joined publicly traded investment bank Moelis & Co. Image via Shutterstock

Houston energy dealmaker Stephen Trauber has been tapped as chairman and global head of the energy and clean technology business at publicly traded investment bank Moelis & Co.

In 2010, The Wall Street Journalcalled Trauber “one of the best-connected energy bankers in Houston.”

Trauber comes to New York City-based Moelis from Citi, where he recently retired as vice chairman and global co-head of natural resources and clean energy transition. Before that, he was vice chairman and global head of energy at UBS Investment Bank, where he worked with Ken Moelis, who’s now chairman and CEO of Moelis. Continue reading.

Houston expert: Is China leading the global energy transition?

guest column

China plays a big role in the global push to shift from fossil fuels to cleaner energy. It's the world's largest carbon emitter but also a global leader in solar, wind, and battery technologies. This combination makes China a critical player in the energy transition. China may not be doing enough to reduce its own greenhouse gas emissions, but it is leading the way in producing low-cost, low-carbon solutions.

Why Materials Matter

One of the biggest challenges in switching to alternative energy is the need for specific materials like lithium, cobalt, and rare earth metals. These are essential for making things like solar panels, wind turbines, and batteries. In her report, "Minerals and Materials Challenges for Our Energy Future(s): Dateline 2024," Michelle Michot Foss emphasizes the critical role of materials in energy transitions:

"Energy transitions require materials transitions; sustainability is multifaceted; and innovation and growth will shape the future of energy and economies."

China controls much of the supply and processing of these materials. For example, it produces most of the world’s rare earth metals and has the largest capacity for making batteries. This gives China a big advantage but also creates risks. Michot Foss points out:

"China’s command over material supply chains presents both opportunities and risks. On one hand, it enables rapid scaling of technologies like wind, solar, and batteries. On the other hand, it exposes the global market to potential vulnerabilities, as geopolitical tensions and trade barriers could disrupt these critical flows."

China’s strategy for dominating alternative energy materials is also closely tied to its national security interests. By securing control over these critical supply chains, China not only hopes to guarantee its own energy independence but also gains significant geopolitical leverage.

“Is China’s leadership strategic or accidental? China’s dominance is a consequence of enormous excess materials supply chain and manufacturing capacity. A flood of exports are undermining materials and “green tech” businesses everywhere. It heightens vulnerabilities and geopolitical tensions. How do we in the US find our own comparative advantage?” Michot Foss notes that advanced materials should be a priority for US responses, especially as attention shifts to nuclear energy possibilities and as carbon capture and hydrogen initiatives play out.

Balancing Energy Growth and Emissions

GabrielCollins, in his report "Reality Is Setting In: Asian Countries to Lead Transitions in 2024 and 2025," offers another perspective. He focuses on how developing nations, especially in Asia, are shaping the energy transition:

"The developing world, including many countries in Asia, increasingly demand that developed nations’ policy advocacy stop treating the economic and environmental needs of the developing world as an afterthought."

Collins highlights China’s dual strategy: investing heavily in renewables while still using coal to meet its growing energy demand. He explains:

"China, which now has installed a terawatt combined of wind and solar capacity while still ramping up coal output and moving to dominate EV and renewables supply chains and manufacturing."

This strategy appeals to other developing nations, which face similar challenges of balancing energy needs with environmental goals while fostering economic growth and expanding industries.

The Numbers: Progress and Challenges

McKinsey’s Global Energy Perspective 2024 provides some useful data. On the bright side, China is installing renewable energy faster than any other country. In 2023, it added over 100 gigawatts of solar capacity, a world record. Wind energy is growing quickly too, and China leads in producing electric vehicle batteries.

But McKinsey also notes the challenges. Coal still generates more than half of China’s electricity. While renewable energy is growing fast, it’s not replacing coal yet—it’s just adding to China’s total energy capacity.

McKinsey sums it up: China is leading in renewable energy deployment, but its reliance on coal highlights the slow pace of deep decarbonization. The country is transitioning, but not fast enough to meet global climate targets.

Is China Leading or Lagging?

So, is China leading the energy transition? The answer is: it depends on how you define “leading.”

If leadership means building more solar and wind farms, dominating the materials supply chain, and being the leading supplier of low-carbon solutions, then yes, China is ahead of everyone else. But if leadership means cutting their own emissions quickly and shifting away from fossil fuels, China still has work to do.

China’s approach is practical. It’s making progress where it can—like scaling up renewables—but it’s also sticking with coal to ensure its economy and energy needs stay stable.

Final Thoughts

China is both a leader and a work in progress when it comes to the energy transition. Its achievements in renewable energy are impressive, but its reliance on coal and the challenges of balancing growth with sustainability show there’s still a long road ahead.

China’s story reminds us that the energy transition isn’t a straight path. It’s a journey full of trade-offs and complexities, and China’s experience reflects the challenges the whole world faces. At the same time, its focus on national security through energy independence and industrial strategy to build low-carbon export businesses signals a strategic move that is reshaping global power dynamics, leaving the United States and other nations to reevaluate their energy policies.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on December 5, 2024.