Tyler Lancaster, a Chicago-based investor with Energize Capital, shares his investment thesis and why Houston-based Amperon caught his eye. Photo courtesy of Energize Capital

One of the biggest challenges to the energy transition is finding the funds to fuel it. Tyler Lancaster, partner at Energize Capital, is playing a role in that.

Energize Capital, based in Chicago, is focused on disruptive software technology key to decarbonization. One of the firm's portfolio companies is Amperon, which raised $20 million last fall.

In an interview with EnergyCapital, Lancaster shares what he's focused on and why Amperon caught Energize Capital's attention.

EnergyCapital: Energize Capital has been investing in climate tech for the better part of a decade now. What types of companies are you looking for and how are these companies’ technologies affecting the greater energy transition?

Tyler Lancaster: We partner with best-in-class innovators to accelerate the sustainability transition. This means identifying climate technology companies at various stages of maturity — from early commercialization to approaching the public markets — that we can help scale and realize their full potential. We invest in software-first climate technology businesses, with a focus on asset-light digital solutions that can help scale sustainable innovation and enable the new energy economy. Our portfolio currently drives software applications across renewable energy, industrial operations, electrification & mobility, infrastructure resilience, and decarbonization. We primarily focus on proven, commercially available and economically viable energy transition solutions (solar, wind, batteries, heat pumps, etc.). These solutions suffer from challenges related to efficient deployment or operations, where enabling digital platforms can play a key role in optimizing costs.

EC: Amperon is one of Energize Capital's portfolio companies. What made the company a great investment opportunity for Energize Capital?

TL: Accelerating the energy transition will require critical forecasting tools like what Amperon provides. This is underscored by the escalating impact of extreme weather events, increasing penetration of variable energy resources, like wind and solar, on the supply side, and surging demand growth driven by flexible loads and rapid electrification. We believe the need for Amperon’s platform will only continue to grow, and their increased raise from Series A to Series B showed they are scaling smartly. We’ve also known Sean Kelly, Abe Stanway, and the entire Amperon team for a long time, and building strong relationships with founders is how we like to do business. Amperon has built a blue-chip customer base in the energy sector in a very capital efficient manner, which is more important than ever for startups operating in the current equity market environment.

EC: One of the energy transition’s biggest problems is sourcing and storing reliable and affordable energy. What have you observed are the biggest problems with Texas’ electricity grid and what types of new tech can help improve these issues?

TL: Today’s electricity grid and the demands we’re putting on it look very different than they ever have. Major changes in climate and extreme weather show how perilous and unreliable the power grids in this country are, particularly in regions like Texas that don’t have the right infrastructure to shield grids from unusual temperatures — just look at the damage done by 2021’s historic Winter Storm Uri. And consumer demand for electricity is increasing as electrification accelerates globally. The makeup of the grid itself is shifting from centralized power plants to distributed clean energy assets like solar arrays and wind turbines, which brings issues of intermittent electricity production and no traditional way to forecast that.

Tech solutions like Amperon are the only way to navigate the nuances of the energy transition. With global net-zero goals and impending Scope II accounting, Amperon’s expertise in granular data management further enables companies to build accurate, dynamic forecasting models with smart meter data and get more visibility into anticipated market shifts so they can optimize their energy use — all of which helps to create a more resilient and reliable power grid.

EC: You are also on the board of the company, which recently announced a collaboration with Microsoft’s tech. What doors does this open for Amperon?

TL: Partnering with Microsoft and offering its energy demand forecasting solution on the Azure platform enables Amperon to better serve more companies that are navigating the energy transition and a rapidly evolving grid. Many power sector companies are also undergoing cloud migrations with Microsoft Azure having high market share. This partnership will specifically accelerate Amperon’s reach with utility customers, who typically have slower sales cycles but can greatly benefit from improved accuracy in energy demand forecasting and adoption of AI technologies.

EC: As a non-Texas investor, how do you see Houston and Texas-based companies’ investability? Has it changed over the years?

TL: While most tech startups are concentrated on the coasts and in Europe, we see Texas emerging as a hub for energy and climate focused startups due to its vicinity to energy giants, which represent potential customers. Texas leads the country in renewable energy production and sits at the forefront of the transition. Energy companies based in this region are relying on technology innovation and software tools to modernize operations and meet the evolving demands of their customers.

———

This conversation has been edited for brevity and clarity.

Will Tope, chief commercial officer of LiNa Energy, joined the Energy Tech Startups podcast to discuss the company's unique technology and growth plans. Photo via LinkedIn

Energy startup exec unveils breakthrough battery chemistry to revolutionize energy storage solutions

Q&A

In a world striving for sustainable and efficient energy solutions, United Kingdom-based LiNa Energy emerges as a promising player in the field of advanced battery technologies.

With a focus on overcoming the limitations of traditional lithium-ion batteries, LiNa Energy — a member of the 2023 cohort for Houston-based incubator, Halliburton Labs — presents a unique chemistry that holds the potential to revolutionize energy storage.

In a recent episode of Energy Tech Startups with Will Tope, chief commercial officer of LiNa Energy, we delve into the key aspects of LiNa Energy's technology, exploring the challenges they seek to address and their plans for commercialization.

Energy Tech Startups: What is the main problem that LiNa Energy is trying to solve with their battery technology?

Will Tope: LiNa Energy is driven by a pressing dilemma in today's storage landscape: the limited efficiency and high costs associated with existing storage technologies. They aim to bridge the gap, providing low-cost, long-duration energy storage solutions that can effectively accommodate the increasing penetration of renewable energy sources in power grids worldwide. By addressing this critical need, LiNa Energy aims to unlock the full potential of low-cost, low-carbon electrons for global energy consumption patterns.

ETS: How does LiNa Energy's battery technology differ from traditional lithium-ion batteries?

WT: LiNa Energy's technology distinguishes itself through its unique chemistry and progressive use of ceramics. By combining a stable sodium-based chemistry, developed in the 1970s, with advancements in ceramics from the fuel cell industry, LiNa Energy maximizes safety, heat management, and energy density. Their battery cells feature thin planar ceramic electrolytes, enabling cost-efficient automated manufacturing and reducing the need for extensive thermal management systems. This streamlined approach offers both enhanced performance and cost-effectiveness.

ETS: What are the commercialization plans and target markets for LiNa Energy?

WT: LiNa Energy strategically targets markets with high solar potential, such as India, where the demand for storage solutions arises due to the growing deployment of renewables and the need to shift energy to peak demand periods. LiNa Energy aims to demonstrate the effectiveness of their systems through pilot projects at distribution scale by the end of the year. Leveraging partnerships and strong relationships with key players in the energy industry, LiNa Energy envisions gradual growth in manufacturing capacity worldwide. By offering competitive pricing, they aim to disrupt the market and drive widespread adoption of their innovative battery technology.

As the energy landscape continues to evolve, LiNa Energy's pursuit of affordable, long-duration energy storage technology stands out as a potential game-changer. With their unique chemistry, ceramic advancements, and focus on commercialization in markets with enormous renewable energy potential, LiNa Energy demonstrates a commitment to addressing the world's energy challenges. By challenging the status quo of traditional energy storage systems, LiNa Energy paves the way for a future where efficient and sustainable energy solutions become the norm.

———

This conversation has been edited for brevity and clarity. Click here to listen to the full episode.

Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Oxy subsidiary granted landmark EPA permits for carbon capture facility

making progress

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive announced that the U.S Environmental Protection Agency approved its Class VI permits to sequester carbon dioxide captured from its STRATOS Direct Air Capture (DAC) facility near Odessa. These are the first such permits issued for a DAC project, according to a news release.

The $1.3 billion STRATOS project, which 1PointFive is developing through a joint venture with investment manager BlackRock, is designed to capture up to 500,000 metric tons of CO2 annually and is expected to begin commercial operations this year. DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Major companies, such as Microsoft and AT&T, have secured carbon removal credit agreements through the project.

The permits are issued under the Safe Drinking Water Act's Underground Injection Control program. The captured CO2 will be stored in geologic formations more than a mile underground, meeting the EPA’s review standards.

“This is a significant milestone for the company as we are continuing to develop vital infrastructure that will help the United States achieve energy security,” Vicki Hollub, Oxy president and CEO, said in a news release.“The permits are a catalyst to unlock value from carbon dioxide and advance Direct Air Capture technology as a solution to help organizations address their emissions or produce vital resources and fuels.”

Additionally, Oxy and 1PointFive announced the signing of a 25-year offtake agreement for 2.3 million metric tons of CO2 per year from CF Industries’ upcoming Bluepoint low-carbon ammonia facility in Ascension Parish, Louisiana.

The captured CO2 will be transported to and stored at 1PointFive’s Pelican Sequestration Hub, which is currently under development. Eventually, 1PointFive’s Pelican hub in Louisiana will include infrastructure to safely and economically sequester industrial emissions in underground geologic formations, similar to the STRATOS project.

“CF Industries’ and its partners' confidence in our Pelican Sequestration Hub is a validation of our expertise managing carbon dioxide and how we collaborate with industrial organizations to become their commercial sequestration partner,” Jeff Alvarez, President of 1PointFive Sequestration, said in a news release.

1PointFive is storing up to 20 million tons of CO2 per year, according to the company.

“By working together, we can unlock the potential of American manufacturing and energy production, while advancing industries that deliver high-quality jobs and economic growth,” Alvarez said in a news release.

Houston energy-focused AI platform raises $5M in Mercury-led seed round

fresh funding

Houston-based Collide, a provider of generative artificial intelligence for the energy sector, has raised $5 million in seed funding led by Houston’s Mercury Fund.

Other investors in the seed round include Bryan Sheffield, founder of Austin-based Parsley Energy, which was acquired by Dallas-based Pioneer Natural Resources in 2021; Billy Quinn, founder and managing partner of Dallas-based private equity firm Pearl Energy Investments; and David Albin, co-founder and former managing partner of Dallas-based private equity firm NGP Capital Partners.

“(Collide) co-founders Collin McLelland and Chuck Yates bring a unique understanding of the oil and gas industry,” Blair Garrou, managing partner at Mercury, said in a news release. “Their backgrounds, combined with Collide’s proprietary knowledge base, create a significant and strategic moat for the platform.”

Collide, founded in 2022, says the funding will enable the company to accelerate the development of its GenAI platform. GenAI creates digital content such as images, videos, text, and music.

Originally launched by Houston media organization Digital Wildcatters as “a professional network and digital community for technical discussions and knowledge sharing,” the company says it will now shift its focus to rolling out its enterprise-level, AI-enabled solution.

Collide explains that its platform gathers and synthesizes data from trusted sources to deliver industry insights for oil and gas professionals. Unlike platforms such as OpenAI, Perplexity, and Microsoft Copilot, Collide’s platform “uniquely accesses a comprehensive, industry-specific knowledge base, including technical papers, internal processes, and a curated Q&A database tailored to energy professionals,” the company said.

Collide says its approximately 6,000 platform users span 122 countries.

CenterPoint reports progress on grid improvements ahead of 2025 hurricane season

grid resilience

As part of an ongoing process to make Houston better prepared for climate disasters, CenterPoint Energy announced its latest progress update on the second phase of the Greater Houston Resiliency Initiative (GHRI).

CenterPoint reported that it has completed 70 percent of its resiliency work and all GHRI-related actions are expected to be complete before the official start of the 2025 hurricane season.

"Our entire CenterPoint Houston Electric team is focused on completing this historic suite of grid resiliency actions before the start of hurricane season,” Darin Carroll, Senior Vice President of CenterPoint's Electric Business, said in a news release. “That is our goal, and we will achieve it. To date, we have made significant progress as part of this historic effort.”

CenterPoint’s resiliency solutions include clearing higher-risk vegetation across thousands of miles of power lines, adding thousands more automation devices capable of self-healing, installing thousands of storm-resistant poles, and undergrounding hundreds of miles of power lines.

CenterPoint's GHRI efforts, which entered a second phase in September 2024, aim to improve overall grid resiliency and reliability and are estimated to reduce outages for customers by more than 125 million minutes annually, according to the company. It has undergrounded nearly 350 miles of power lines, about 85 percent of the way toward its target of 400 miles, which will help improve resiliency and reduce the risk of outages. CenterPoint also aims to install the first of 100 new local weather monitoring stations by June 1.

In March, CenterPoint cleared 655 miles of high-risk vegetation near power lines, installed 1,215 automated reliability devices capable of self-healing, and added an additional 3,300 storm-resilient poles.

In April, CenterPoint will begin building a network of 100 new weather monitoring stations, which will provide 24/7 weather monitoring and storm response preparation.

“We will continue to work every day to complete these critical improvements as part of our company's goal of building the most resilient coastal grid in the country,” Carroll added in the release.