Tyler Lancaster, a Chicago-based investor with Energize Capital, shares his investment thesis and why Houston-based Amperon caught his eye. Photo courtesy of Energize Capital

One of the biggest challenges to the energy transition is finding the funds to fuel it. Tyler Lancaster, partner at Energize Capital, is playing a role in that.

Energize Capital, based in Chicago, is focused on disruptive software technology key to decarbonization. One of the firm's portfolio companies is Amperon, which raised $20 million last fall.

In an interview with EnergyCapital, Lancaster shares what he's focused on and why Amperon caught Energize Capital's attention.

EnergyCapital: Energize Capital has been investing in climate tech for the better part of a decade now. What types of companies are you looking for and how are these companies’ technologies affecting the greater energy transition?

Tyler Lancaster: We partner with best-in-class innovators to accelerate the sustainability transition. This means identifying climate technology companies at various stages of maturity — from early commercialization to approaching the public markets — that we can help scale and realize their full potential. We invest in software-first climate technology businesses, with a focus on asset-light digital solutions that can help scale sustainable innovation and enable the new energy economy. Our portfolio currently drives software applications across renewable energy, industrial operations, electrification & mobility, infrastructure resilience, and decarbonization. We primarily focus on proven, commercially available and economically viable energy transition solutions (solar, wind, batteries, heat pumps, etc.). These solutions suffer from challenges related to efficient deployment or operations, where enabling digital platforms can play a key role in optimizing costs.

EC: Amperon is one of Energize Capital's portfolio companies. What made the company a great investment opportunity for Energize Capital?

TL: Accelerating the energy transition will require critical forecasting tools like what Amperon provides. This is underscored by the escalating impact of extreme weather events, increasing penetration of variable energy resources, like wind and solar, on the supply side, and surging demand growth driven by flexible loads and rapid electrification. We believe the need for Amperon’s platform will only continue to grow, and their increased raise from Series A to Series B showed they are scaling smartly. We’ve also known Sean Kelly, Abe Stanway, and the entire Amperon team for a long time, and building strong relationships with founders is how we like to do business. Amperon has built a blue-chip customer base in the energy sector in a very capital efficient manner, which is more important than ever for startups operating in the current equity market environment.

EC: One of the energy transition’s biggest problems is sourcing and storing reliable and affordable energy. What have you observed are the biggest problems with Texas’ electricity grid and what types of new tech can help improve these issues?

TL: Today’s electricity grid and the demands we’re putting on it look very different than they ever have. Major changes in climate and extreme weather show how perilous and unreliable the power grids in this country are, particularly in regions like Texas that don’t have the right infrastructure to shield grids from unusual temperatures — just look at the damage done by 2021’s historic Winter Storm Uri. And consumer demand for electricity is increasing as electrification accelerates globally. The makeup of the grid itself is shifting from centralized power plants to distributed clean energy assets like solar arrays and wind turbines, which brings issues of intermittent electricity production and no traditional way to forecast that.

Tech solutions like Amperon are the only way to navigate the nuances of the energy transition. With global net-zero goals and impending Scope II accounting, Amperon’s expertise in granular data management further enables companies to build accurate, dynamic forecasting models with smart meter data and get more visibility into anticipated market shifts so they can optimize their energy use — all of which helps to create a more resilient and reliable power grid.

EC: You are also on the board of the company, which recently announced a collaboration with Microsoft’s tech. What doors does this open for Amperon?

TL: Partnering with Microsoft and offering its energy demand forecasting solution on the Azure platform enables Amperon to better serve more companies that are navigating the energy transition and a rapidly evolving grid. Many power sector companies are also undergoing cloud migrations with Microsoft Azure having high market share. This partnership will specifically accelerate Amperon’s reach with utility customers, who typically have slower sales cycles but can greatly benefit from improved accuracy in energy demand forecasting and adoption of AI technologies.

EC: As a non-Texas investor, how do you see Houston and Texas-based companies’ investability? Has it changed over the years?

TL: While most tech startups are concentrated on the coasts and in Europe, we see Texas emerging as a hub for energy and climate focused startups due to its vicinity to energy giants, which represent potential customers. Texas leads the country in renewable energy production and sits at the forefront of the transition. Energy companies based in this region are relying on technology innovation and software tools to modernize operations and meet the evolving demands of their customers.

———

This conversation has been edited for brevity and clarity.

Will Tope, chief commercial officer of LiNa Energy, joined the Energy Tech Startups podcast to discuss the company's unique technology and growth plans. Photo via LinkedIn

Energy startup exec unveils breakthrough battery chemistry to revolutionize energy storage solutions

Q&A

In a world striving for sustainable and efficient energy solutions, United Kingdom-based LiNa Energy emerges as a promising player in the field of advanced battery technologies.

With a focus on overcoming the limitations of traditional lithium-ion batteries, LiNa Energy — a member of the 2023 cohort for Houston-based incubator, Halliburton Labs — presents a unique chemistry that holds the potential to revolutionize energy storage.

In a recent episode of Energy Tech Startups with Will Tope, chief commercial officer of LiNa Energy, we delve into the key aspects of LiNa Energy's technology, exploring the challenges they seek to address and their plans for commercialization.

Energy Tech Startups: What is the main problem that LiNa Energy is trying to solve with their battery technology?

Will Tope: LiNa Energy is driven by a pressing dilemma in today's storage landscape: the limited efficiency and high costs associated with existing storage technologies. They aim to bridge the gap, providing low-cost, long-duration energy storage solutions that can effectively accommodate the increasing penetration of renewable energy sources in power grids worldwide. By addressing this critical need, LiNa Energy aims to unlock the full potential of low-cost, low-carbon electrons for global energy consumption patterns.

ETS: How does LiNa Energy's battery technology differ from traditional lithium-ion batteries?

WT: LiNa Energy's technology distinguishes itself through its unique chemistry and progressive use of ceramics. By combining a stable sodium-based chemistry, developed in the 1970s, with advancements in ceramics from the fuel cell industry, LiNa Energy maximizes safety, heat management, and energy density. Their battery cells feature thin planar ceramic electrolytes, enabling cost-efficient automated manufacturing and reducing the need for extensive thermal management systems. This streamlined approach offers both enhanced performance and cost-effectiveness.

ETS: What are the commercialization plans and target markets for LiNa Energy?

WT: LiNa Energy strategically targets markets with high solar potential, such as India, where the demand for storage solutions arises due to the growing deployment of renewables and the need to shift energy to peak demand periods. LiNa Energy aims to demonstrate the effectiveness of their systems through pilot projects at distribution scale by the end of the year. Leveraging partnerships and strong relationships with key players in the energy industry, LiNa Energy envisions gradual growth in manufacturing capacity worldwide. By offering competitive pricing, they aim to disrupt the market and drive widespread adoption of their innovative battery technology.

As the energy landscape continues to evolve, LiNa Energy's pursuit of affordable, long-duration energy storage technology stands out as a potential game-changer. With their unique chemistry, ceramic advancements, and focus on commercialization in markets with enormous renewable energy potential, LiNa Energy demonstrates a commitment to addressing the world's energy challenges. By challenging the status quo of traditional energy storage systems, LiNa Energy paves the way for a future where efficient and sustainable energy solutions become the norm.

———

This conversation has been edited for brevity and clarity. Click here to listen to the full episode.

Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics company partners with Marathon Petroleum to scale fleet

robot alliance

Houston- and Boston-based Square Robot Inc. has announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC).

The partnership comes with an undisclosed amount of funding from Marathon, which Square Robot says will help "shape the design and development" of its submersible robotics platform and scale its fleet for nationwide tank inspections.

“Marathon’s partnership marks a major milestone in our mission to transform industrial tank inspection,” David Lamont, CEO of Square Robot, said in a news release. “They recognize the proven value of our robotic inspections—eliminating confined space entry, reducing the environmental impact, and delivering major cost efficiencies all while keeping tanks on-line and working. We’re excited to work together with such a great company to expand inspection capabilities and accelerate innovation across the industry.”

The company closed a $13 million series B last year. At the time of closing, Square Robot said it would put the funding toward international expansion in Europe and the Middle East.

Square Robot develops autonomous, submersible robots that are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments. Its newest tank inspection robot, known as the SR-3HT, became commercially available and certified to operate at a broader temperature range than previous models in the company's portfolio this fall.

The company was first founded in the Boston area in 2016 and launched its Houston office in 2019.

Eclipse Energy lands Weatherford investment to scale clean hydrogen tech

clean energy collab

Oil and gas giant Weatherford International (NASDAQ: WFRD) has made a capital investment for an undisclosed amount in Eclipse Energy as part of a collaborative partnership aimed at scaling and commercializing Eclipse's clean fuel technology.

According to a release, joint projects from the two Houston-based companies are expected to launch as soon as January 2026. The partnership aims to leverage Weatherford's global operations with Eclipse Energy's pioneering subsurface biotechnology that converts end-of-life oil fields into low-cost, sustainable hydrogen sources.

“We strongly believe the subsurface is the most overlooked climate asset,” Prabhdeep Singh Sekhon, CEO of Eclipse Energy, said in the release. “This partnership demonstrates how traditional oilfield expertise and frontier biotechnology can come together to transform the energy transition. Weatherford’s global reach and deep technical knowledge will accelerate our ability to scale our low-carbon technology rapidly and cost-effectively.”

Eclipse Energy, previously known as Gold H2, completed its first field trial this summer, demonstrating subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen, and it could also extend "beyond hydrogen, laying the foundation for the next generation of subsurface clean energy fuels."

Last month, Eclipse Energy won in the Energy Transition Business category at the 2025 Houston Innovation Awards. The company closed an $8 million series A this year and has plans to raise another round in 2026.