funds secured

Houston-based, AI-powered electricity analytics company raises $20M series B

Energy tech platform Amperon raised $20 million. Photo via Amperon.co

A Houston startup has raised $20 million in its latest round of funding in order to accelerate its energy analytics and grid decarbonization technology.

Amperon Holdings Inc. announced today that it closed its series B round at $20 million. Energize Capital led the round and the D. E. Shaw group, Veriten, and HSBC Asset Management, an existing investor, joined in on the round. Additionally, two of Amperon's early customers, Ørsted and another strategic utility partner, participated in the series B, which brought Amperon’s total funding to $30 million.

The fresh funding will support the company in evolving its platform that conducts electricity demand forecasting to a comprehensive data analytics solution. Amperon's solution has an opportunity to really impact the industry's "increasingly turbulent power grids worldwide" among climate change and rapid adoption of variable energy resources, like wind and solar, the company explains in a news release about its raise.

“The energy transition is creating unprecedented market volatility, and Amperon is uniquely positioned to help market participants better navigate the transitioning grid – both in the U.S. and as we expand globally,” Sean Kelly, CEO and co-founder of Amperon, says in the release. “We've already established ourselves as the premier provider of electricity demand forecasting software. With this funding, we are poised to leverage our cutting-edge AI models to enable customers to unlock more value from data and asset optimization, spanning from on-site solar to commercial load management with backup generation and microgrid deployment.”

With the round, Energize Capital Partner Tyler Lancaster joins the Amperon board of directors.

“Today’s electricity grid is facing uniquely modern challenges as we work to rapidly transform our energy assets and decarbonize our economy,” he says in the release. “To facilitate the energy transition – a multitrillion-dollar market opportunity — we need more software tools custom-built to handle the complexities of our evolving energy markets.

"Amperon’s AI-powered analytics platform is exactly that, providing the accuracy and sophistication necessary for energy players across the value chain to manage their energy use and streamline our collective pathway to net-zero," he continues. "After getting to know Sean and the Amperon team since inception, Energize is thrilled to officially partner with them as a lead investor in this funding.”

In the past two years, Amperon reports that it grew revenue by five times, as well as quadrupled its team. The company was founded in 2017 and raised its $7 million series A last year.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News