taking notes

Things to know this week: Houston energy tech nominations open, events not to miss, and more

Houston energy transition folks — here's what to know to start your week. Photo via Getty Images

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Calling all Houston energy innovators

Last year, several innovative energy transition companies were honored, like Syzygy Plasmonics. Photo by Emily Jaschke/InnovationMap

For the fourth year, InnovationMap is hosting its signature awards program, the Houston Innovation Awards, that will recognize the top startups and innovators in Houston. The awards program will be on Thursday, November 14, at the Texas Medical Center's Helix Park. Tickets and tables are on sale now.

There are a few categories energy startups should be aware of this year — in particular, the Energy Transition Business category, which honors an innovative startup providing a solution within renewables, climatetech, clean energy, alternative materials, circular economy, and beyond. Learn more about the awards categories here.

Click here to submit a nomination.

Roundup: Navigating Houston's two September climate-focused weeks

Houston is playing host to a ton of energy and climate-focused events next month. Photo courtesy of the Ion

Two separate weeks of climate and energy-focused weeks are organizing events and programming during the second week of September. Here's what all to consider attending.

Find out more information about each week online:

Houston energy leader wins hydrogen program's competition

The University of Houston's new hydrogen program selected an Houston executive's team as the top project of the course. Photo courtesy of SCS

Cody Johnson, CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units, was on the winning 2024 Spring Capstone Project team for the University of Houston Hydrogen Economy Program with the project, "Business Roadmap for Utilizing Hydrogen in Houston." The presentation outlined possible profits of $1.8 billion over the contract life with $180 million in green H2 investments.

The winning capstone project demonstrated the implementation of decarbonization processes. It included the enhancement of “capacity utilization in existing industrial hydrogen production along the Houston Ship Channel through amine capture technology,” according to a news release.

"It was an honor to collaborate with my Hydrogen Economy Program teammates to explore business opportunities using existing technologies to produce clean hydrogen and reinvest profits to further advance decarbonization efforts in the future," Johnson says in a news release. "I extend my gratitude to the University of Houston for assembling top-notch resources on the critical topic of clean hydrogen production. By bringing together students, corporate leaders, engineers, and scientists, we are able to join forces to accelerate the renewable hydrogen economy." Read more.

Trending News

A View From HETI

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.

Trending News