fresh funds

Proposed Texas high-speed Houston-Dallas rail lands $500K in federal funds

Texas high-speed bullet train has some fresh financial fuel. Photo of the N700 courtesy of © JR Central

Amtrak and its partners will receive more than $2.1 billion in a federal program to improve existing routes and expand Amtrak service across the U.S.

That includes $500,000 from the Federal Railroad Administration awarded to the long-in-the-works high-speed rail project between Houston and Dallas, as well as another $500,000 awarded to the I-20 Corridor Long-Distance Passenger Rail Project.

The funding is via the newly-passed Infrastructure Investment & Jobs Act and includes multiple grants that will go to Amtrak and partners. This includes:

  • $108.5 million to Amtrak for station and service upgrades;
  • $2 billion to Amtrak partners in North Carolina, Virginia, Pennsylvania, and Maine for infrastructure upgrades
  • $34.5 million to 39 states and localities for planning and development of 69 new and improved intercity passenger rail corridors

These grants were awarded through the Federal Railroad Administration’s Federal-State Partnership for Intercity Passenger Rail Program for projects located across the National Network, as well as the Corridor Identification and Development Program (Corridor ID).

FRA Administrator Amit Bose says in a statement that these will be "transformative rail projects" that will provide climate-friendly alternatives to congested roads and airports.

“Today’s investments in passenger rail nationwide, made possible by the President’s Bipartisan Infrastructure Law, are another step forward as we expand and modernize our country’s rail network, providing more Americans the world-class passenger rail they need and deserve," Bose says.

Amtrak was awarded funding on a variety of projects, including four Corridor programs, designed to create a pipeline of intercity passenger rail projects.

Those include:

  • Texas High-Speed Rail Corridor. This proposed corridor would connect Houston and Dallas, Texas, with a new, dedicated and grade separated high-speed passenger rail service. This would provide new service on a new alignment, with station stops in Dallas, Brazos Valley and Houston.
  • Long Island Northeast Regional Extension. This proposed corridor would extend three existing daily Northeast Regional round trips between Washington, DC and New York City east to Ronkonkoma, NY, with stops at Jamaica (Queens, NY) and Hicksville, NY. This would entail track, station and infrastructure upgrades to accommodate these trains and better integrate Amtrak service with Long Island Rail Road commuter service.
  • Daily Cardinal Service. This proposed corridor would increase Cardinal service to operate daily, versus three days per week currently. This route operates between New York City and Chicago via Philadelphia, Baltimore, Washington, DC, Virginia, West Virginia, Kentucky, Ohio and Indiana.
  • Daily Sunset Limited Service. This proposed corridor would increase Sunset Limited service to operate daily, versus three days per week currently. This route operates between Los Angeles and New Orleans via Houston, San Antonio and El Paso, Texas; Tucson, Ariz.; and other communities.

The release does not say exactly how the $500,000 will be used. According to TxDOT, the current estimate for construction of track between Houston and Dallas is approximately $16 billion.

------

This article originally ran on CultureMap.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News