M&A

Houston company acquired by private equity​ firm, plans to expand support of energy transition

The deal and financial support will help Saber to expand its services within the energy transition, including the ability to build out renewables and battery resources amid the electrification of the U.S. economy. Photo via Getty Images

A Houston-based infrastructure services platform has been acquired by an energy industry-focused private equity firm.

Saber Power Services announced last month that it has been acquired by an investor group led by Greenbelt Capital Management from funds managed by Oaktree Capital Management. The acquisition was in partnership with funds managed by Schroders Capital, StepStone Group, and Wafra Inc., according to the company's news release.

Saber, founded in 2010, is an electrical services firm that provides design, construction, testing, and maintenance services and solutions across the energy spectrum — renewables, battery storage, utility, industrial, and energy infrastructure markets. The company's customers are located throughout Texas and the Southeast.

“With over a decade of experience, the Saber Power team has demonstrated its ability to provide a safe, reliable and high-performance service offering that excels in complex environments," Brian Bratton, CEO of Saber, says in the release. "We are excited for Saber’s next chapter and believe this investment from Greenbelt demonstrates the market leading position of our business and our customers’ trust in the quality of our work."

The terms of the deal were not disclosed, but some of Saber’s management team will maintain ownership of a significant stake in the company, according to the news release. Greenbelt, the acquiring party, secured debt and equity financing from Blackstone Credit.

“We are excited to partner with Greenbelt and look forward to supporting Saber with the next phase of its growth," say Blackstone representatives in the release. "Blackstone Credit invests in market leading energy-transition companies and believes Saber is well-positioned to play an important role in this space.”

The deal and financial support will help Saber to expand its services within the energy transition, including the ability to build out renewables and battery resources amid the electrification of the U.S. economy.

“The energy landscape is rapidly evolving as electrification trends continue to impact commercial and industrial end markets," Sam Graham, principal at Greenbelt, says. "Both physical assets and power markets will need to adapt to support load shifting, bi-directional power flows, and meaningfully increased power demand, all of which require increased grid complexity and strengthens demand for Saber’s specialized engineering, design, construction and maintenance services.”

Chris Murphy, partner at Greenbelt, adds that modernization of the grid is an important sector focus for the company.

"We believe Saber’s end-to-end service platform is critical to facilitate the growing penetration of distributed energy resources across the grid, as well as meet the increasing demands of mass-scale industrial electrification," he says. "We are thrilled to partner with Saber’s experienced and talented executive team and believe our history of investing across the new energy economy will allow us to help accelerate the Company’s growth.”

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News