The deal and financial support will help Saber to expand its services within the energy transition, including the ability to build out renewables and battery resources amid the electrification of the U.S. economy. Photo via Getty Images

A Houston-based infrastructure services platform has been acquired by an energy industry-focused private equity firm.

Saber Power Services announced last month that it has been acquired by an investor group led by Greenbelt Capital Management from funds managed by Oaktree Capital Management. The acquisition was in partnership with funds managed by Schroders Capital, StepStone Group, and Wafra Inc., according to the company's news release.

Saber, founded in 2010, is an electrical services firm that provides design, construction, testing, and maintenance services and solutions across the energy spectrum — renewables, battery storage, utility, industrial, and energy infrastructure markets. The company's customers are located throughout Texas and the Southeast.

“With over a decade of experience, the Saber Power team has demonstrated its ability to provide a safe, reliable and high-performance service offering that excels in complex environments," Brian Bratton, CEO of Saber, says in the release. "We are excited for Saber’s next chapter and believe this investment from Greenbelt demonstrates the market leading position of our business and our customers’ trust in the quality of our work."

The terms of the deal were not disclosed, but some of Saber’s management team will maintain ownership of a significant stake in the company, according to the news release. Greenbelt, the acquiring party, secured debt and equity financing from Blackstone Credit.

“We are excited to partner with Greenbelt and look forward to supporting Saber with the next phase of its growth," say Blackstone representatives in the release. "Blackstone Credit invests in market leading energy-transition companies and believes Saber is well-positioned to play an important role in this space.”

The deal and financial support will help Saber to expand its services within the energy transition, including the ability to build out renewables and battery resources amid the electrification of the U.S. economy.

“The energy landscape is rapidly evolving as electrification trends continue to impact commercial and industrial end markets," Sam Graham, principal at Greenbelt, says. "Both physical assets and power markets will need to adapt to support load shifting, bi-directional power flows, and meaningfully increased power demand, all of which require increased grid complexity and strengthens demand for Saber’s specialized engineering, design, construction and maintenance services.”

Chris Murphy, partner at Greenbelt, adds that modernization of the grid is an important sector focus for the company.

"We believe Saber’s end-to-end service platform is critical to facilitate the growing penetration of distributed energy resources across the grid, as well as meet the increasing demands of mass-scale industrial electrification," he says. "We are thrilled to partner with Saber’s experienced and talented executive team and believe our history of investing across the new energy economy will allow us to help accelerate the Company’s growth.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”