coming soon

Energy exec to take the reins of the Greater Houston Partnership

Steve Kean will transition from leading Kinder Morgan to assuming the role of president and CEO of the Greater Houston Partnership later this year. Photo courtesy of the GHP

A longtime energy executive has been named the next president and CEO of the Greater Houston Partnership. He'll take on the new role this fall.

The GHP named Steve Kean, who currently serves as the CEO of Kinder Morgan Inc., to the position. He's expected to transition from CEO to board of directors member at Kinder Morgan on August 1. Kean will then assume his new position at GHP no later than Dec. 1.

Dr. Marc L. Boom, GHP board chair and president and CEO of Houston Methodist, made the announcement at a press conference June 21.

“Steve brings incredible business acumen and leadership skills to the organization," Boom says in a statement. "Coupled with an extraordinary passion for Houston, he will build on the Partnership’s momentum to continue to advance greater Houston as a region of extraordinary growth and opportunity.”

The GHP's outgoing president and CEO, Bob Harvey, announced his retirement earlier this year, and will remain in his position until Kean is onboarded. Kean was selected via a search committee established by 2022 board chair, Thad Hill. The committee was chaired by Marc Watts and included Boom, Thad Hill, Paul Hobby, Gina Luna, Eric Mullins, Armando Perez, and Ruth Simmons. The process, which looked at over 70 highly-qualified Houston leaders, also included the services of Spencer Stuart to manage the search.

“This last decade has been a dynamic time for Houston and the Partnership," Harvey says in a statement. "As a life-long Houstonian, it has been an honor to focus my efforts on supporting Houston’s continued growth and working with the business community to create opportunities for all Houstonians. This is an exciting time for Houston. I am very pleased that Steve is enthusiastic about leading the Partnership, and I look forward to the organization’s continued success under his leadership.”

With decades in the energy industry, Kean joined Kinder Morgan in 2002 and has served as COO, president of Natural Gas Pipelines, and president of Kinder Morgan Inc. before rising to CEO. He received a bachelor's degree from Iowa State University and his law degree from the University of Iowa.

“I’m grateful for the opportunity to serve our region in this role," he says. "I look forward to building on what Bob, the Board, members, and staff of the Partnership have accomplished. I know first-hand the opportunities that a vibrant business sector can create for people and communities. I look forward to expanding those opportunities further.”

------

This article originally ran on InnovationMap.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News