First-of-its-kind, DOE-backed plant coming to Houston area

Carbon capture and storage

Houston power company Calpine announced plans to build the Baytown Carbon Capture and Storage Project, a carbon capture demonstration facility that aims to capture carbon dioxide from the Baytown Energy Center. Photo via DOE

The first full-scale implementation of carbon capture and storage technology at a natural gas combined cycle power plant in the U.S. is coming to Baytown.

Houston power company Calpine announced plans to build the Baytown Carbon Capture and Storage Project (Baytown CCS Project), which is a carbon capture demonstration facility that aims to capture carbon dioxide from the Baytown Energy Center (BEC). The BEC is a natural gas combined-cycle power plant in Baytown.

The Department of Energy recently announced that it will share in the cost of up to $270 million on the Baytown project. The DOE revealed more details on the project on its website.

The project aims to utilize Shell’s CANSOLV point-source technology to capture up to 2 million metric tons of CO2 per year, which is equivalent to the annual emissions of nearly 450,000 gasoline-powered cars. In addition, the project plans to sequester the CO2 in saline storage sites on the Gulf Coast.

Evaluating the use of greywater cooling to minimize freshwater consumption by reusing wastewater, the project’s primary power and steam off-taker Covestro hopes to prove “technologies that showcase the benefits of decarbonized process heat and electricity in the industrial sector,” according to a news release.

In December of 2023, Calpine was selected by the Department of Energy's Office of Clean Energy Demonstrations for a cost-sharing agreement for a commercial-scale carbon capture and storage project.

"This is a critical step towards decarbonizing Calpine’s facility, which is located on our Covestro Baytown site,” Demetri Zervoudis, Covestro head of operations for North America and Baytown site general manager, said in a previous news release. “Carbon capture and storage technology is an important tool for the chemical industry to reduce carbon emissions, and it is encouraging to see Calpine at the forefront of this transition.”

The Baytown Decarbonization Project was developed collaboratively with local stakeholders in East Houston. According to the company, the project has already incorporated community feedback into the project designs to reduce non-CO2 air pollutants and minimize the usage of freshwater. The company estimates creating 22-26 permanent jobs and 1,500,000 hours of construction jobs and has partnerships with minority-serving institutions.

“Carbon capture is an important technology for decarbonizing the electricity sector and the economy,” Thad Hill, CEO of Calpine Corp said in 2023 when the DOE decided to work with the CSS program. “Calpine is very grateful for the commitment and support for the project by our stakeholders.”

Steve Kean will transition from leading Kinder Morgan to assuming the role of president and CEO of the Greater Houston Partnership later this year. Photo courtesy of the GHP

Energy exec to take the reins of the Greater Houston Partnership

coming soon

A longtime energy executive has been named the next president and CEO of the Greater Houston Partnership. He'll take on the new role this fall.

The GHP named Steve Kean, who currently serves as the CEO of Kinder Morgan Inc., to the position. He's expected to transition from CEO to board of directors member at Kinder Morgan on August 1. Kean will then assume his new position at GHP no later than Dec. 1.

Dr. Marc L. Boom, GHP board chair and president and CEO of Houston Methodist, made the announcement at a press conference June 21.

“Steve brings incredible business acumen and leadership skills to the organization," Boom says in a statement. "Coupled with an extraordinary passion for Houston, he will build on the Partnership’s momentum to continue to advance greater Houston as a region of extraordinary growth and opportunity.”

The GHP's outgoing president and CEO, Bob Harvey, announced his retirement earlier this year, and will remain in his position until Kean is onboarded. Kean was selected via a search committee established by 2022 board chair, Thad Hill. The committee was chaired by Marc Watts and included Boom, Thad Hill, Paul Hobby, Gina Luna, Eric Mullins, Armando Perez, and Ruth Simmons. The process, which looked at over 70 highly-qualified Houston leaders, also included the services of Spencer Stuart to manage the search.

“This last decade has been a dynamic time for Houston and the Partnership," Harvey says in a statement. "As a life-long Houstonian, it has been an honor to focus my efforts on supporting Houston’s continued growth and working with the business community to create opportunities for all Houstonians. This is an exciting time for Houston. I am very pleased that Steve is enthusiastic about leading the Partnership, and I look forward to the organization’s continued success under his leadership.”

With decades in the energy industry, Kean joined Kinder Morgan in 2002 and has served as COO, president of Natural Gas Pipelines, and president of Kinder Morgan Inc. before rising to CEO. He received a bachelor's degree from Iowa State University and his law degree from the University of Iowa.

“I’m grateful for the opportunity to serve our region in this role," he says. "I look forward to building on what Bob, the Board, members, and staff of the Partnership have accomplished. I know first-hand the opportunities that a vibrant business sector can create for people and communities. I look forward to expanding those opportunities further.”

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.