guest column

EV technology is well on its way for lower carbon impact, Houston expert says

The road, then, is not entirely smooth, but the direction is clear: EVs are on their way. Photo via Getty Images

Are electric vehicles at a tipping point? In a word, yes.

And yes, I know that this has been said before — more than once. Predictions of electric vehicle sales have been notoriously over-optimistic. An article by my own company projected sales in New York could be as high as 16 percent by 2015; in fact, it was about 1 percent in 2020. But — and this has been said before, too — this time is different. The realities on the ground are catching up with the hope, or the hype, or both.

While there are only 11 million EVs on the road now, EV registrations rose more than 40 percent in 2020 — although car sales dropped 16 percent that year. So far in 2021, EV sales are up another 80 percent. In the United States, sales of EVs doubled as percent of the total between the second quarter of 2020 and the same period last year.

The momentum is real. What’s changed?

For one thing, global car manufacturers are re-tooling for EVs in a big way. It’s interesting that at the September auto show in Germany, almost all the models presented were electric, like this sleek saloon from Mercedes, which has announced plans to go all-electric by the end of the decade. GM, too, has said it wants all its vehicles to be emissions-free by 2035.

From 2020 through the first half of 2021, more than $100 billion was invested in EVs, and carmakers have announced more than $300 billion in additional investment. That money is producing hundreds of different models, meaning that there are vehicles available that normal people, not just enthusiasts, want to buy. All of the top 20 global auto manufacturers are investing big-time in EVs.

For another, while the sticker price for EVs is generally higher, the economics are improving. On a total-cost-of ownership basis—meaning how much they cost to run compared to conventional cars—they already make sense in many markets, particularly given rising gas prices. At the same time, widespread government subsidies to new EV buyers take some of the sting out of the sticker shock. As more vehicles are produced, costs will likely fall.

Finally, the market context is changing — quickly and radically. The European Union is proposing an effective ban on conventional cars by 2035, as is Britain. California and New York are both requiring that all new vehicles sold be zero-emissions by the same year. Japan has plans to phase out gas-powered cars over roughly the same period. The US federal government has set a 50 percent target for electrification and allocated serious money to charging infrastructure. The trend is clear: the future is electric.

I can’t say when that future will arrive, but I suspect it will be much faster than in the recent past and probably not as fast as the optimists would like. Global sales are forecast to reach 10.7 million by 2025 and more than 28 million by 2030. But, of course, forecasts have been wrong before. Remember, too, that cars and trucks have a long shelf life; a significant percentage of the 1.4 billion on the road now are going to be on the road a decade hence. In addition, there could be geopolitical and supply roadblocks in the form of limited supplies of components like nickel, cobalt, and lithium, which are used in the production of batteries. I suspect that innovation and ingenuity will find a way around if shortages do occur — as is already happening. But if the cost of alternatives is high, that could drive up prices and affect the overall economics of EVs.

The road, then, is not entirely smooth, but the direction is clear: EVs are on their way.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News