The road, then, is not entirely smooth, but the direction is clear: EVs are on their way. Photo via Getty Images

Are electric vehicles at a tipping point? In a word, yes.

And yes, I know that this has been said before — more than once. Predictions of electric vehicle sales have been notoriously over-optimistic. An article by my own company projected sales in New York could be as high as 16 percent by 2015; in fact, it was about 1 percent in 2020. But — and this has been said before, too — this time is different. The realities on the ground are catching up with the hope, or the hype, or both.

While there are only 11 million EVs on the road now, EV registrations rose more than 40 percent in 2020 — although car sales dropped 16 percent that year. So far in 2021, EV sales are up another 80 percent. In the United States, sales of EVs doubled as percent of the total between the second quarter of 2020 and the same period last year.

The momentum is real. What’s changed?

For one thing, global car manufacturers are re-tooling for EVs in a big way. It’s interesting that at the September auto show in Germany, almost all the models presented were electric, like this sleek saloon from Mercedes, which has announced plans to go all-electric by the end of the decade. GM, too, has said it wants all its vehicles to be emissions-free by 2035.

From 2020 through the first half of 2021, more than $100 billion was invested in EVs, and carmakers have announced more than $300 billion in additional investment. That money is producing hundreds of different models, meaning that there are vehicles available that normal people, not just enthusiasts, want to buy. All of the top 20 global auto manufacturers are investing big-time in EVs.

For another, while the sticker price for EVs is generally higher, the economics are improving. On a total-cost-of ownership basis—meaning how much they cost to run compared to conventional cars—they already make sense in many markets, particularly given rising gas prices. At the same time, widespread government subsidies to new EV buyers take some of the sting out of the sticker shock. As more vehicles are produced, costs will likely fall.

Finally, the market context is changing — quickly and radically. The European Union is proposing an effective ban on conventional cars by 2035, as is Britain. California and New York are both requiring that all new vehicles sold be zero-emissions by the same year. Japan has plans to phase out gas-powered cars over roughly the same period. The US federal government has set a 50 percent target for electrification and allocated serious money to charging infrastructure. The trend is clear: the future is electric.

I can’t say when that future will arrive, but I suspect it will be much faster than in the recent past and probably not as fast as the optimists would like. Global sales are forecast to reach 10.7 million by 2025 and more than 28 million by 2030. But, of course, forecasts have been wrong before. Remember, too, that cars and trucks have a long shelf life; a significant percentage of the 1.4 billion on the road now are going to be on the road a decade hence. In addition, there could be geopolitical and supply roadblocks in the form of limited supplies of components like nickel, cobalt, and lithium, which are used in the production of batteries. I suspect that innovation and ingenuity will find a way around if shortages do occur — as is already happening. But if the cost of alternatives is high, that could drive up prices and affect the overall economics of EVs.

The road, then, is not entirely smooth, but the direction is clear: EVs are on their way.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.