leadership shift

ConocoPhillips exec overseeing sustainability, tech set to retire

The executive who manages the ConocoPhillips sustainability and technology teams has announced his retirement. Photo via ConocoPhillips.com

After decades at the company, ConocoPhillips's executive vice president of strategy, sustainability, and technology is retiring.

ConocoPhillips (NYSE: COP) announced that Dominic Macklon, who's been in his role for two and a half years and at the company for 33 years, has elected to retire effective May 1.

“I want to thank Dominic for his leadership, dedication and significant contributions during his distinguished 33 years with ConocoPhillips,” Ryan Lance, chairman and CEO, says in a news release.

“Dominic has played an important role in identifying and driving value from low cost of supply opportunities across our global portfolio while positioning our company for the energy transition and accelerating our emissions reduction initiatives," Lance continues. "I wish Dominic the best in retirement as he relocates back to the U.K.”

In his role, Macklon oversees the teams focused on corporate planning and development, global technical functions, information technology, sustainable development, and low carbon technology, according to the company's website. He previously worked on managing operations of the Gulf Coast and Great Plains business units, as well as land and commercial gas activities, finance, human resources and health, safety and environment.

A graduate of University of Edinburgh, his other leadership roles at the company include vice president of corporate planning and development, president of ConocoPhillips United Kingdom, and senior vice president of Oil Sands.

ConocoPhillips did not reveal any details on who is to succeed Macklon at this time.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News