seeing green

New global report names top cleantech startups to keep an eye on

Fervo Energy — and a few other Greentown Labs companies — made a global list of clean tech companies. Photo via fervoenergy.com

Nine Greentown Labs members were recognized on a global list honoring cleantech companies.

Houston-based Fervo Energy was named to Cleantech Group’s Global Cleantech 100 report. Cleantech Group is a research-driven company that aids the public sector, private sector, investors, and also identifies, assesses, and engages with the innovative solutions around climate challenges.

Fervo, a geothermal energy company that specializes in a renewable energy technology that uses hot water to produce electricity, debuted in 2022 on the list, and was honored in the “Energy & Power” category for the second straight year.

The other Greentown Labs, which is dual located in Houston and Somerville, Massachusetts, companies recognized on the list include:

  • Amogy, a New York-based novel carbon-free energy system using ammonia as a renewable fuel
  • Carbon Upcycling Technologies, a Canadian waste and carbon utilization company
  • Dandelion Energy, New York-based company offering ground source heat pumps for most homes
  • Energy Dome, a Milan-based company addressing the problem of long-duration energy storage
  • e-Zinc, a Canadian company with a breakthrough electrochemical technology for energy storage
  • Nth Cycle, a Massachusetts company with sustainable metal refining
  • Raptor Maps, a Massachusetts company with a software platform for solar assets' performance data management
  • Sublime Systems, a Massachusetts companydeveloping a breakthrough process for low-carbon cement
  • WeaveGrid, a California company working with utilities, automakers, EVSEs, and EV owners to enable and accelerate the electrification of transportation

The number of nominations from the public, a panel, i3, awards and Cleantech Group totaled 25,435 from over 65 countries, which is a 61% increase from the 2023 nomination process. Winners were chosen from a short list of 330 companies by a panel of over 80 industry experts.

While not on the list, Beaumont-based Fortress Energy was mentioned for its electrolyzer supply agreement with Cleantech Group 100 winner Electric Hydrogen.

The Cleantech Group 100 was started 15 years ago.

“In 15 more years, we will be at 2039—by which time, a mere decade out from the ‘net-zero’ target of 2050,” Cleantech Group CEO Richard Youngman says in the report. “I would expect the composition of our annual list to have markedly changed again, and the leading upcoming private companies of that time to reflect such.”

Trending News

A View From HETI

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

Trending News