seeing green

New global report names top cleantech startups to keep an eye on

Fervo Energy — and a few other Greentown Labs companies — made a global list of clean tech companies. Photo via fervoenergy.com

Nine Greentown Labs members were recognized on a global list honoring cleantech companies.

Houston-based Fervo Energy was named to Cleantech Group’s Global Cleantech 100 report. Cleantech Group is a research-driven company that aids the public sector, private sector, investors, and also identifies, assesses, and engages with the innovative solutions around climate challenges.

Fervo, a geothermal energy company that specializes in a renewable energy technology that uses hot water to produce electricity, debuted in 2022 on the list, and was honored in the “Energy & Power” category for the second straight year.

The other Greentown Labs, which is dual located in Houston and Somerville, Massachusetts, companies recognized on the list include:

  • Amogy, a New York-based novel carbon-free energy system using ammonia as a renewable fuel
  • Carbon Upcycling Technologies, a Canadian waste and carbon utilization company
  • Dandelion Energy, New York-based company offering ground source heat pumps for most homes
  • Energy Dome, a Milan-based company addressing the problem of long-duration energy storage
  • e-Zinc, a Canadian company with a breakthrough electrochemical technology for energy storage
  • Nth Cycle, a Massachusetts company with sustainable metal refining
  • Raptor Maps, a Massachusetts company with a software platform for solar assets' performance data management
  • Sublime Systems, a Massachusetts companydeveloping a breakthrough process for low-carbon cement
  • WeaveGrid, a California company working with utilities, automakers, EVSEs, and EV owners to enable and accelerate the electrification of transportation

The number of nominations from the public, a panel, i3, awards and Cleantech Group totaled 25,435 from over 65 countries, which is a 61% increase from the 2023 nomination process. Winners were chosen from a short list of 330 companies by a panel of over 80 industry experts.

While not on the list, Beaumont-based Fortress Energy was mentioned for its electrolyzer supply agreement with Cleantech Group 100 winner Electric Hydrogen.

The Cleantech Group 100 was started 15 years ago.

“In 15 more years, we will be at 2039—by which time, a mere decade out from the ‘net-zero’ target of 2050,” Cleantech Group CEO Richard Youngman says in the report. “I would expect the composition of our annual list to have markedly changed again, and the leading upcoming private companies of that time to reflect such.”

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Trending News