fresh funding

Chevron backs carbon capture tech company in $45M investment round

Boulder, Colorado-based ION Clean Energy announces it has raised $45 million in financing. Photo via Getty Images

Chevron New Energies has a new cleantech company in its portfolio.

Boulder, Colorado-based ION Clean Energy announces it has raised $45 million in financing. The round was led by Chevron New Energies with participation from New York-based Carbon Direct Capital. Founded in 2008, ION's carbon dioxide capture technologies lower costs and make CO2 capture a more viable option for hard-to-abate emissions.

“We have truly special solvent technology. It is capable of very high capture efficiency with low energy use while simultaneously being exceptionally resistant to degradation with virtually undetectable emissions. That’s a pretty powerful combination that sets us apart from the competition. The investments from Chevron and Carbon Direct Capital are a huge testament to the hard work of our team and the potential of our technology,” ION founder and Executive Chairman Buz Brown says in a news release. “We appreciate their collaboration and with their investments we expect to accelerate commercial deployment of our technology so that we can realize the kind of wide-ranging commercial and environmental impact we’ve long envisioned.”

The funding will go toward ION’s organizational growth and commercial deployment of its ICE-31 liquid amine carbon capture technology.

“We continue to make progress on our goal to deliver the full value chain of carbon capture, utilization, and storage (CCUS) as a business, and we believe ION is a part of this solution. ION has consistent proof points in technology performance, recognition from the Department of Energy, partnerships with global brands, and a strong book of business that it brings to the relationship,” Chris Powers, vice president of CCUS and emerging with CNE, says in the release. “ION’s solvent technology, combined with Chevron’s assets and capabilities, has the potential to reach numerous emitters and support our ambitions of a lower carbon future. We believe collaborations like this are essential to our efforts to grow carbon capture on a global scale.”

With the new investment, the company announced that Timothy Vail will join the company as CEO. He previously was CEO of Arbor Renewable Gas and founder and CEO of G2X Energy Inc. He also serves as an Operating Partner for OGCI Climate Investments.

"With these investments, we are well positioned to grow ION into a worldwide provider of high-performance point source capture solutions,” Vail says. “This capital allows us to accelerate the commercial deployment of our carbon capture technology.”

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News