fresh funding

Chevron backs carbon capture tech company in $45M investment round

Boulder, Colorado-based ION Clean Energy announces it has raised $45 million in financing. Photo via Getty Images

Chevron New Energies has a new cleantech company in its portfolio.

Boulder, Colorado-based ION Clean Energy announces it has raised $45 million in financing. The round was led by Chevron New Energies with participation from New York-based Carbon Direct Capital. Founded in 2008, ION's carbon dioxide capture technologies lower costs and make CO2 capture a more viable option for hard-to-abate emissions.

“We have truly special solvent technology. It is capable of very high capture efficiency with low energy use while simultaneously being exceptionally resistant to degradation with virtually undetectable emissions. That’s a pretty powerful combination that sets us apart from the competition. The investments from Chevron and Carbon Direct Capital are a huge testament to the hard work of our team and the potential of our technology,” ION founder and Executive Chairman Buz Brown says in a news release. “We appreciate their collaboration and with their investments we expect to accelerate commercial deployment of our technology so that we can realize the kind of wide-ranging commercial and environmental impact we’ve long envisioned.”

The funding will go toward ION’s organizational growth and commercial deployment of its ICE-31 liquid amine carbon capture technology.

“We continue to make progress on our goal to deliver the full value chain of carbon capture, utilization, and storage (CCUS) as a business, and we believe ION is a part of this solution. ION has consistent proof points in technology performance, recognition from the Department of Energy, partnerships with global brands, and a strong book of business that it brings to the relationship,” Chris Powers, vice president of CCUS and emerging with CNE, says in the release. “ION’s solvent technology, combined with Chevron’s assets and capabilities, has the potential to reach numerous emitters and support our ambitions of a lower carbon future. We believe collaborations like this are essential to our efforts to grow carbon capture on a global scale.”

With the new investment, the company announced that Timothy Vail will join the company as CEO. He previously was CEO of Arbor Renewable Gas and founder and CEO of G2X Energy Inc. He also serves as an Operating Partner for OGCI Climate Investments.

"With these investments, we are well positioned to grow ION into a worldwide provider of high-performance point source capture solutions,” Vail says. “This capital allows us to accelerate the commercial deployment of our carbon capture technology.”

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News