doubling down

CenterPoint Energy announces $5B expanded resiliency plan

CenterPoint has committed to "the largest investment in Greater Houston infrastructure in the company's nearly 160-year history." Photo via Getty Images

CenterPoint Energy disclosed that it's completed its core resiliency actions first phase of its Greater Houston Resiliency Initiative. The company also reports that it's outlined extra upcoming efforts.

Following the unprecedented outages of Hurricane Beryl, CenterPoint outlined its GHRI in August. As of last week, the first phase, which included more than 40 critical actions in total to strengthen the electric grid, has been completed ahead of schedule.

The company also announced a second phase of GHRI and approximately $5 billion in resiliency investment from 2026 to 2028, a figure that's around twice as much as initially promised.

"We have heard the call to action from our customers and elected officials, and we are responding with bold actions," says Jason Wells, CenterPoint president and CEO, in a statement. "Our defining goal, going forward, is this: to build the most resilient coastal grid in the country that can better withstand the extreme weather of the future. To achieve this ambition, we will undertake a historic level of resiliency actions and investment, because this is what the people of the Greater Houston area expect and deserve."

According to CenterPoint, the second phase will include system hardening, strategic undergrounding, self-healing grid technology, and further enhancements to the company's outage tracker.

CenterPoint outlined its recently completed efforts, including installing over 300 automation devices and more than 1,000 stronger poles, as well as removing hazardous vegetation from more than 2,000 miles of power lines. Next up, CenterPoint says it's near-term actions will include further grid strengthening, public communication improvements, and enhancements to local, community, and emergency partnerships. The details of this phase, which will take place between September 1 to June 1, will be released by September 30.

In the company's longer-term action plan, CenterPoint commits to $5 billion in upgrades from 2026 to 2028 — "the largest investment in Greater Houston infrastructure in the company's nearly 160-year history."

"The mission of this longer-term plan of action is to build the most resilient coastal grid in the country by investing in a smarter grid of the future that can better withstand a broad spectrum of risks," reads the statement. "The proposal, and the entire scope of these actions will be outlined in a new system resiliency plan that is expected to be filed with the Public Utility Commission of Texas on or before January 31, 2025."

CenterPoint reports that lawmakers have received this information directly, and that the plan will be shaped by feedback from its customers, experts, and stakeholders, including elected officials and local agencies.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News