doubling down

CenterPoint Energy announces $5B expanded resiliency plan

CenterPoint has committed to "the largest investment in Greater Houston infrastructure in the company's nearly 160-year history." Photo via Getty Images

CenterPoint Energy disclosed that it's completed its core resiliency actions first phase of its Greater Houston Resiliency Initiative. The company also reports that it's outlined extra upcoming efforts.

Following the unprecedented outages of Hurricane Beryl, CenterPoint outlined its GHRI in August. As of last week, the first phase, which included more than 40 critical actions in total to strengthen the electric grid, has been completed ahead of schedule.

The company also announced a second phase of GHRI and approximately $5 billion in resiliency investment from 2026 to 2028, a figure that's around twice as much as initially promised.

"We have heard the call to action from our customers and elected officials, and we are responding with bold actions," says Jason Wells, CenterPoint president and CEO, in a statement. "Our defining goal, going forward, is this: to build the most resilient coastal grid in the country that can better withstand the extreme weather of the future. To achieve this ambition, we will undertake a historic level of resiliency actions and investment, because this is what the people of the Greater Houston area expect and deserve."

According to CenterPoint, the second phase will include system hardening, strategic undergrounding, self-healing grid technology, and further enhancements to the company's outage tracker.

CenterPoint outlined its recently completed efforts, including installing over 300 automation devices and more than 1,000 stronger poles, as well as removing hazardous vegetation from more than 2,000 miles of power lines. Next up, CenterPoint says it's near-term actions will include further grid strengthening, public communication improvements, and enhancements to local, community, and emergency partnerships. The details of this phase, which will take place between September 1 to June 1, will be released by September 30.

In the company's longer-term action plan, CenterPoint commits to $5 billion in upgrades from 2026 to 2028 — "the largest investment in Greater Houston infrastructure in the company's nearly 160-year history."

"The mission of this longer-term plan of action is to build the most resilient coastal grid in the country by investing in a smarter grid of the future that can better withstand a broad spectrum of risks," reads the statement. "The proposal, and the entire scope of these actions will be outlined in a new system resiliency plan that is expected to be filed with the Public Utility Commission of Texas on or before January 31, 2025."

CenterPoint reports that lawmakers have received this information directly, and that the plan will be shaped by feedback from its customers, experts, and stakeholders, including elected officials and local agencies.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News