take note

New Houston energy tech showroom, a deadline not to forget, and more to know this week

The Baker Hughes Technology Showcase opens — and more things to know this week. Photo courtesy of Baker Hughes

Editor's note: It's a new week — start it strong with three quick things to catch up on in Houston's energy transition: looking back on top news from 2023, a deadline not to miss, and more.

New Baker Hughes Technology Showcase

The Baker Hughes Technology Showcase exists permanently at the company's Western Hemisphere Education Center in Tomball just outside of Houston to display the company's technologies.

There are more than 30 physical displays — some scaled down and 3D printed while others are exact replicas of the technology out in the field. In addition to these tangible pieces, hundreds are available to peruse on the touch-screen displays.

While there's the full technology spectrum represented, there's a particular focus on clean energy technologies — ones that aren't just future facing but are actually being used in the field today. Read more about the new showcase.

Upcoming deadline: The DOE's EnergyTech University Prize

The Rice Alliance for Technology and Entrepreneurship will host the regional qualifier for a Department of Energy-backed student competition, and the application deadline to participate is coming up.

The DOE's EnergyTech University Prize, or EnergyTech UP, a virtual regional qualifier hosted by the Rice Alliance will take place in February, and applications for students and faculty are now open. A $400,000 collegiate competition, the program challenges student teams to develop a business plan based off of National Laboratory-developed or other emerging energy technology.

The application deadline is February 1 for students. This year there's a new track for faculty that has a prize of $100,000 on the line. Faculty have until January 5 to apply. Learn more.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News