new hire

Global law firm names partner to build growing infrastructure, energy transition business

Weil, Gotshal & Manges announced infrastructure lawyer Jacqui Bogucki has returned to the firm. Photo via weil.com

An international law firm has named a new partner in the Houston office to help build its growing infrastructure and energy transition capabilities

Weil, Gotshal & Manges announced infrastructure lawyer Jacqui Bogucki has returned to the firm.

"Jacqui will be an extremely valuable addition to our growing Houston team,” says Weil Executive Partner Barry Wolf in a news release. “Her significant infrastructure experience – including in the digital sector – and strong relationships with leading investment professionals will help to advance our fast-growing infrastructure and energy transition capabilities, and will be an immediate value-add to our clients globally.”

She will advise private equity sponsors and strategic clients on a wide range of corporate transactions. Her focus will include infrastructure, digital, technology, energy transition, and oil and gas sectors. Previously, Bogucki was a partner in the Mergers & Acquisitions practice at Simpson Thacher & Bartlett LLP. Her previous stint at Weil was from 2014 through 2018.

“I am so pleased to have the opportunity to return to Weil, where I began my legal career,” says Bogucki in a news release. “It is an incredibly exciting time to be joining the Firm as it further builds out its infrastructure and energy transition capabilities. I look forward to reconnecting with former colleagues and leveraging my experience to provide the highest quality service to our clients.”

Since 2023, notable energy partners Omar Samji, Chris Bennett, Cody Carper, and Irina Tsveklova have joined Weil in Houston – with Steven Lorch joining in New York just last month.

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Trending News