Texas and California represented 61 percent of the total installed capacity of utility-scale energy storage for solar and wind power in the final three months of last year. Photo via Getty Images

When it comes to the storage of solar and wind energy, Texas might be able to swipe the Sunshine State nickname from Florida.

The Lone Star State led all states in the fourth quarter of 2024 with the installation of 1.2 gigawatts’ worth of utility-scale energy storage for solar and wind power, according to the recently released U.S. Energy Storage Monitor. In second place was California, with 875 megawatts’ worth of utility-scale storage installed in the fourth quarter. Together, Texas and California represented 61 percent of the total installed capacity in the final three months of last year.

The American Clean Power Association and Wood Mackenzie, a provider of data and analytics for the energy sector, issued the report.

Utility-scale systems stash large amounts of electricity generated by solar and wind for future use, easing the strain on power grids during periods of peak usage and power outages.

“Energy storage is solidifying its place as a leading solution for strengthening American energy security and grid reliability in a time of historic rising demand for electricity,” Noah Roberts, vice president of energy storage at the clean power organization, said in a statement. “The energy storage industry has quickly scaled to meet the moment, and deliver reliability and cost savings for American communities, serving a critical role [in] firming and balancing low-cost renewables.”

According to a report, In the fourth quarter, Texas is expected to add about 3.7 gigawatts of solar capacity — more than the combined total for the previous three quarters. Photo via Getty Images

Report: Texas expected to shine as top state for solar installations in 2023

fourth quarter push

When all the numbers are tallied, 2023 should be a very sunny year for solar installations in Texas.

The Solar Energy Industries Association, SEIA, and energy research and consulting firm Wood Mackenzie predict Texas will be the top state for solar installations in 2023. In the fourth quarter, Texas is expected to add about 3.7 gigawatts of solar capacity — more than the combined total for the previous three quarters.

In 2021, Texas added nearly 6.07 gigawatts of solar capacity, with that figure falling to more than 3.66 gigawatts in 2022. But for 2023, SEIA and Wood Mackenzie anticipate Texas having added almost 6.24 gigawatts of solar capacity for residential, business, and utility customers.

A report released last week by SEIA and Wood Mackenzie indicates that sales volume for solar installations has declined in Texas and some other states due in part to higher costs for financing solar equipment. Solar sales volume in Texas started dropping off in late 2022 and has continued to shrink, says the report.

Wood Mackenzie forecasts 13 percent growth for the U.S. residential solar market in 2023. The report predicts the U.S. will have added 33 gigawatts of residential solar capacity in 2023, up from a record-setting 6.5 gigawatts in 2022. The U.S. added 6.5 gigawatts of residential solar capacity in the third quarter of 2023 alone, says the report.

“Solar remains the fastest-growing energy source in the United States, and despite a difficult economic environment, this growth is expected to continue for years to come,” says Abigail Ross Hopper, president and CEO of SEIA. “To maintain this forecasted growth, we must modernize regulations and reduce bureaucratic roadblocks to make it easier for clean energy companies to invest capital and create jobs.”

Solar accounted for nearly half (48 percent) of all new electric-generating capacity during the first three quarters of 2023, bringing total installed solar capacity in the U.S. to 161 gigawatts across 4.7 million installations. By 2028, U.S. solar capacity is expected to reach 377 gigawatts, enough to power more than 65 million homes.

“The U.S. solar industry is on a strong growth trajectory, with expectations of 55 percent growth this year and 10 percent growth in 2024,” says Michelle Davis, head of solar research at Wood Mackenzie.

“Growth is expected to be slower starting in 2026 as various challenges like interconnection constraints become more acute,” she adds. “It’s critical that the industry continue to innovate to maximize the value that solar brings to an increasingly complex grid. Interconnection reform, regulatory modernization, and increasing storage attachment rates will be key tools.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

America's only rare earth producer announces $500M agreement with Apple

Digging In

MP Materials, which runs the only American rare earths mine, announced a new $500 million agreement with tech giant Apple on Tuesday to produce more of the powerful magnets used in iPhones as well as other high-tech products like electric vehicles.

This news comes on the heels of last week’s announcement that the U.S. Defense Department agreed to invest $400 million in shares of the Las Vegas-based company. That will make the government the largest shareholder in MP Materials and help increase magnet production.

Despite their name, the 17 rare earth elements aren’t actually rare, but it’s hard to find them in a high enough concentration to make a mine worth the investment.

They are important ingredients in everything from smartphones and submarines to EVs and fighter jets, and it's those military applications that have made rare earths a key concern in ongoing U.S. trade talks. That's because China dominates the market and imposed new limits on exports after President Donald Trump announced his widespread tariffs. When shipments dried up, the two sides sat down in London.

The agreement with Apple will allow MP Materials to further expand its new factory in Texas to use recycled materials to produce the magnets that make iPhones vibrate. The company expects to start producing magnets for GM's electric vehicles later this year and this agreement will let it start producing magnets for Apple in 2027.

The Apple agreement represents a sliver of the company's pledge to invest $500 billion domestically during the Trump administration. And although the deal will provide a significant boost for MP Materials, the agreement with the Defense Department may be even more meaningful.

Neha Mukherjee, a rare earths analyst with Benchmark Mineral Intelligence, said in a research note that the Pentagon's 10-year promise to guarantee a minimum price for the key elements of neodymium and praseodymium will guarantee stable revenue for MP Minerals and protect it from potential price cuts by Chinese producers that are subsidized by their government.

“This is the kind of long-term commitment needed to reshape global rare earth supply chains," Mukherjee said.

Trump has made it a priority to try to reduce American reliance on China for rare earths. His administration is both helping MP Materials and trying to encourage the development of new mines that would take years to come to fruition. China has agreed to issue some permits for rare earth exports but not for military uses, and much uncertainty remains about their supply. The fear is that the trade war between the world’s two biggest economies could lead to a critical shortage of rare earth elements that could disrupt production of a variety of products. MP Materials can't satisfy all of the U.S. demand from its Mountain Pass mine in California’s Mojave Desert.

The deals by MP Materials come as Beijing and Washington have agreed to walk back on their non-tariff measures: China is to grant export permits for rare earth magnets to the U.S., and the U.S. is easing export controls on chip design software and jet engines. The truce is intended to ease tensions and prevent any catastrophic fall-off in bilateral relations, but is unlikely to address fundamental differences as both governments take steps to reduce dependency on each other.

Houston energy tech platform Molecule closes series B funding

energy software

Houston-based energy trading risk management (ETRM) software company Molecule has completed a successful series B round for an undisclosed amount, according to a July 16 release from the company.

The raise was led by Sundance Growth, a California-based software growth equity firm.

Sameer Soleja, founder and CEO of Molecule, said in the release that the funding will allow the company to "double down on product innovation, grow our team, and reach even more markets."

Molecule closed a $12 million Series A round in 2021, led by Houston-based Mercury Fund, and has since seen significant growth. The company, which was founded in 2012, has expanded its customer base across the U.S., U.K., Europe, Canada and South America, according to the release.

Additionally, it has launched two new modules of its software platform. Its Hive module, which debuted in 2022, enables clients to manage their energy portfolio and renewable credits together in one scalable platform. It also introduced Elektra, an add-on for the power market to its platform, which allows for complex power market trading.

"Four years ago, we committed to becoming the leading platform for energy trading," Soleja said in the release. "Today, our customers are managing complex power and renewable portfolios across multiple jurisdictions, all within Molecule.”

Molecule is also known for its data-as-a-lake platform, Bigbang, which enables energy ETRM and commodities trading and risk management (CTRM) customers to automatically import trade data from Molecule and then merge it with various sources to conduct queries and analysis.

“Molecule is doing something very few companies in energy tech have done: combining mission-critical depth with cloud-native, scalable technology,” Christian Stewart, Sundance Growth managing director, added in the statement. “Sameer and his team have built a platform that’s not only powerful, but user-friendly—a rare combination in enterprise software. We’re thrilled to partner with Molecule as they continue to grow and transform the energy trading and risk management market.”