Here's the latest global energy company to sign onto Greentown Labs. Photo via GreentownLabs.com

Greentown Labs has named its latest partner, opening a door to Colombia and South America.

Ecopetrol has joined Greentown as its newest Terawatt Partner, the highest level partner for the incubator. The company, which the Colombian government holds a majority ownership stake in, has integrated business across the hydrocarbon value chain, as well as low emission solutions and energy transmission.

"Accelerating the energy transition and fostering climate action is only possible through innovation, entrepreneurship, and meaningful partnerships," Ecopetrol's Chief Innovation Officer Agostinho João Ramalho Almeida says in a news release. "At Grupo Ecopetrol, we believe in joint efforts, orchestration, and access to technology to push barriers and increase value for our business and sustainability agenda. Partnering with Greentown Labs and working alongside industry leaders is an amazing opportunity to tackle common goals and challenges."

The company has a presence in several other locales throughout South and North America, per the release.

With the new partnership, Ecopetrol will have access to the Greentown community and events. Laura Tobón Díaz, head of innovation ecosystems and strategic partnerships for Ecopetrol, will serve on Greentown's Industry Leadership Council.

"Greentown is excited to partner with Ecopetrol, an energy company taking meaningful action on climate in collaboration with the Colombian government," Greentown CEO and President Kevin Knobloch says in the release. "We look forward to seeing our startups' climate technologies advance Ecopetrol's decarbonization efforts, as well as Ecopetrol sharing its energy expertise, connections, and resources with our entrepreneurs."

Earlier this year, TotalEnergies joined the incubator at the Terawatt level, and before that, GE Vernova was the latest top-level partner, joining last fall.

Greentown Labs has a new Terawatt Partner. Photo courtesy of Greentown Labs

TotalEnergies signs on as top-level partner at climatetech incubator

onboarding

Greentown Labs, dual located in Houston and Somerville, Massachusetts, has named its latest top-level partner.

TotalEnergies has joined the incubator at the the highest level of partnership — the Terawatt level — Greentown Labs announced on January 23. Through the partnership, TotalEnergies will have access to Greentown's membership of clean energy startups and event programming.

Lotfi Hedhli, president at TotalEnergies Research & Technology U.S., will participate on Greentown’s Industry Leadership Council, providing strategic guidance to the incubator.

“We are excited to join Greentown Labs and its ecosystem to catalyze the development of potential decarbonization technologies through collaboration with promising startups,” Hedhli says in a news release. “This partnership with Greentown Labs will focus in particular on the deployment and use of renewables and low-carbon solutions, which are critical to our ambition to achieve carbon neutrality.”

TotalEnergies is among the world's largest utility-scale solar developers with activity in over 30 states in the country, including a Houston-area solar farm that went online in October. Additionally, TotalEnergies announced in November that it signed an agreement with TexGen to acquire $635 million three gas-fired power plants with a total capacity of 1.5 GW in Texas.

“At Greentown Labs, we continue to recognize and appreciate the role energy leaders play in the clean energy transition and we’re proud to have TotalEnergies join us as a Terawatt Partner,” Greentown Labs CEO and President Kevin Knobloch says in the news release. “We applaud the meaningful steps TotalEnergies is taking to expand its renewable energy portfolio and generation, and we’re eager to have their team of experts engaging directly with our climatetech entrepreneurs.”

Greentown last named a Terawatt Partner — GE Vernova — last fall.

GE Verona joins Greentown Labs as a top-tier partner. Photo via gevernova.com

Greentown Labs names GE affiliate as latest top-level partner

new to the crew

Greentown Labs, dually located in Houston and Somerville, Massachusetts, has announced its latest Terawatt Partner, which is the climatetech incubator's highest-level partnership.

Greentown Labs announced this week that GE Vernova, a global energy company that focusing on moving the energy transition through "continuing to electrify the world," has joined its top tier of partners. Greentown has over 20 of these Terawatt Partners, and GE Verona joins the ranks of Chevron, Amazon, Aramco, Microsoft, Shell, and more.

“GE Vernova embodies what we’re looking for in a partner: energy transition expertise with a deep commitment and passion for innovation, collaboration, and decarbonization,” Greentown Labs CEO and President Kevin Knobloch says in a statement. “Equally important, the team at GE Vernova has a real sense of urgency to accelerate global decarbonization and is eager to engage with our community of climatetech startups—I can’t wait to see all that we’ll accomplish together.”

GE Vernova specializes in power, wind, and electrification while keeping decarbonization at the forefront of its business. The company opened its global headquarters in Cambridge, Massachusetts just down the street from where Greentown got its start in 2011 and only a few miles from the incubator today.

“I am thrilled to join as a new partner with Greentown Labs and look to support the climatetech ecosystem in many different ways,” GE Vernova CEO Scott Strazik says in the news release. “Whether it’s innovating new technologies, the industrialization of products, or leveraging our relationships globally, we are eager to collaborate with this unique and important group of entrepreneurs, innovators, and leaders.”

With the arrangement, Limor Spector, president of Ventures and Incubation at GE Vernova, will serve on the Industry Leadership Council.

Founded in 2022, GE Verona is expected to spin off from GE in the second quarter of next year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.

Houston microgrid company names new CEO

new hire

Houston-based electric microgrid company Enchanted Rock has named a new CEO.

John Carrington has assumed the role after serving as Enchanted Rock's executive chairman since June, the company announced earlier this month.

Carrington most recently was CEO of Houston-based Stem, which offers AI-enabled software and services designed for setting up and operating clean energy facilities. He stepped down as Stem’s CEO in September 2024. Stem, which was founded in 2006 and went public under Carrington's leadership in 2021, was previously based in San Francisco.

Carrington has also held senior leadership roles at Miasolé, First Solar and GE.

Corey Amthor has served as acting CEO of Enchanted Rock since June. He succeeded Enchanted Rock founder Thomas McAndrew in the role, with McAndrew staying on with the company as a strategic advisor and board member. With the hiring of Carrington, Amthor has returned to his role as president. According to the company, Amthor and Carrington will "partner to drive the company’s next phase of growth."

“I’m proud to join a leadership team known for technical excellence and execution, and with our company-wide commitment to innovation, we are well positioned to navigate this moment of unprecedented demand and advance our mission alongside our customers nationwide,” Carrington said in the news release. “Enchanted Rock’s technology platform delivers resilient, clean and scalable ultra-low-emissions onsite power that solves some of the most urgent challenges facing our country today. I’m energized by the strong momentum and growing market demand for our solutions, and we remain committed to providing data centers and other critical sectors with the reliable power essential to their operations.”

This summer, Enchanted Rock also announced that Ian Blakely would reassume the role of CFO at the company. He previously served as chief strategy officer. Paul Froutan, Enchanted Rock's former CTO, was also named COO last year.