Oxy Low Carbon Ventures says fusion technology holds the potential to supply emissions-free, continuous, on-demand energy to bolster power and heating requirements for Occidental’s large-scale DAC facilities. Photo via 1pointfive.com

Oxy Low Carbon Ventures, an investment arm of Houston-based energy giant Occidental, is teaming up with TAE Technologies to explore the use of TAE’s fusion technology at Occidental’s direct air capture (DAC) facilities.

Financial terms of the deal weren’t disclosed.

Oxy Low Carbon Ventures says fusion technology holds the potential to supply emissions-free, continuous, on-demand energy to bolster power and heating requirements for Occidental’s large-scale DAC facilities.

“Collaborating with TAE Technologies is an opportunity to build on Occidental’s portfolio of clean power sources that can provide our [DAC] facilities with reliable, emissions-free energy,” Frank Koller, vice president for power development at Oxy Low Carbon Ventures, says in a news release.

Occidental is diving headfirst into the DAC sector. The primary example of its DAC commitment is construction in West Texas of the world’s largest DAC plant through a joint venture between Occidental subsidiary 1PointFive and investment giant BlackRock. BlackRock is investing $550 million in the facility.

The project is expected to be completed in mid-2025. The facility is eventually supposed to capture up to 500,000 metric tons of carbon dioxide each year.

DAC technology pulls carbon dioxide from the atmosphere so it can be stored permanently or converted into products. While the carbon removal process sounds simple, it requires a tremendous amount of energy. That’s where fusion technology like TAE’s comes into play.

TAE’s fusion technology works by combining (or fusing) the light nuclei of elements such as hydrogen to produce energy. The energy release is managed by producing steam, which spins a turbine that drives an electric generator producing clean energy or clean heat.

Founded in 1998, Foothill Ranch, California-based TAE develops commercial fusion power for generation of clean energy.

“Oxy Low Carbon Venture’s desire for emissions-free energy makes this the perfect moment to explore the deployment of our commercial-ready power management products, while the growing demand for large-scale power generation can be served by our future fusion offerings,” says Michl Binderbauer, CEO of TAE.

The Houston energy transition ecosystem is primed for collaborative partnerships – but here's what to keep in mind. Photo courtesy of Digital Wildcatters

Addressing the need for collaboration in Houston's energy transition

Editor's note

When it comes to advancing the energy transition in Houston and beyond, experts seem to agree that collaborations between all major stakeholders is extremely important.

In fact, it was so important that it was the first panel of the second day of FUZE, an energy-focused conference put on by Digital Wildcatters. EnergyCapital HTX and InnovationMap were the event's media partners, and I, as editor of these news outlets, moderated the panel about collaborations.

I wanted to take a second to reflect on the conversation I had with the panelists earlier this week, as I believe their input and expertise — from corporate and nonprofit to startup and investing — was extremely valuable to the greater energy transition community.

Here were my three takeaways from the panel, titled "Collaborative Partnerships: Leveraging synergy in the energy sector."

Early-stage tech startups need bridges to cross their valleys.

The energy transition is a long game — and an expensive one, as Jane Stricker, executive director of the Houston Energy Transition Initiative, explains on the panel. And, just like most startups, the path to commercialization and profitability is long — and definitely not promised.

"When you look at innovation and startups, the multiple valleys of death a startup will go through on their journey, we have to find more ways to bridge those valleys and get more technology to get up that mountain and to a place where it can be scaled," she says.

She explains that corporations aren't always good at innovating, but they are impactful about rolling out de-risked technology at a global scale. But the technology has to get to that point first, so it takes a much earlier intervention for corporates — or another entity, like incubators and accelerators — to help in that developmental process.

"In Houston we have the potential to build out that ecosystem — we already have a lot of pieces in place, so it's about connecting the dots," Stricker says. "It's only by all of the different parts of the ecosystem understanding what each other does and what unique role they play in the process that we can really leverage the strengths of each of them to help create those partnerships and opportunities."

As Amy Henry, CEO of EUNIKE Ventures explains, corporates have their own challenges.

"Energy companies themselves have their own valley of death, and from where they are sitting, that's why they need to collaborate," she says on the panel. "And now we're talking about an unprecedented rate of getting technology commercialized."

EUNIKE works as a go between for corporates — almost as an expansion for them, Henry explains, and they are facing a challenging time too.

"Energy companies are just not early adopters of technology," she says. "But they are also going through their own transformation. At the same time, you've had this huge knowledge leakage in terms of all the workforce reduction."

Startups and corporates speak a different language.

Moji Karimi has had several partnerships with corporations with his biotech startup Cemvita Factory, including a recent offtake agreement with United. For Karimi, it's about learning about your corporate partner.

"In partnerships, especially for startups, you need to understand what is the language of love for the company at time," he says on the panel. "Is it growth, is it perception and PR, is it deployment of capital, or is there a specific bottleneck that we can help remove."

For HETI, Striker says they hope to act as a translator between the two parties.

"How do we enable more connectivity between the companies that have a technology that may be of interest to the larger companies looking for a solution?" Striker explains of HETI's mission. "And how do we make sure industry is communicating opening and broadly?"

Now is the time for action.

For Karimi, the solution is simple: More action is needed.

"Generally, we just need to talk less and do more," he says of what he wants to see from corporates, adding that more checks need to be written.

Based on his own experience, Karimi says some corporates are better to work with than others. He says he prefers working with the companies that don't try to mix in their startup pilots with the "bread and butter" of the business.

"Everyone has so much on their plate," he says, giving the example of Oxy Low Carbon Ventures being an offshoot of Oxy's main business.

Karimi says corporates should think of their startup pilots as an opportunity to try something new and different — something they'd never be able to test internally.

David Maher, business development director of Americas at Linde, says now that there's been regulatory framework, Linde knows what to invest in. The company has a particular interest in hydrogen.

"Another big piece of it is scale," Maher says of what Linde thinks about when considering innovative partnerships. "What's great about Houston is we have density and scale already."

Occidental says its all-cash acquisition of Canada-based Carbon Engineering is set to close by the end of 2023. Photo via carbonengineering.com

Oxy acquires carbon capture co. in $1.1B deal

betting on dac

In yet another bet on direct carbon capture (DAC), Houston-based Occidental has agreed to purchase a DAC technology company for $1.1 billion.

Occidental says its all-cash acquisition of Canada-based Carbon Engineering is set to close by the end of 2023. Carbon Engineering was founded in 2009.

Under the deal, Carbon Engineering would become a wholly owned subsidiary of Oxy Low Carbon Ventures, the investment arm of Occidental. Carbon Engineering employees will work with teams at Occidental and its low-carbon subsidiary, 1PointFive, on DAC technology. The company’s R&D and innovation units will remain in Squamish, British Columbia.

Occidental has been a key DAC partner of Carbon Engineering since 2019.

“We look forward to continuing our collaboration with the Carbon Engineering team, which has been a leader in pioneering and advancing DAC technology,” Vicki Hollub, president and CEO of Occidental, says in an August 15 news release. “Together, Occidental and Carbon Engineering can accelerate plans to globally deploy DAC technology at a climate-relevant scale and make DAC the preferred solution for businesses seeking to remove their hard-to-abate emissions.”

Billionaire Warren Buffett’s Berkshire Hathaway conglomerate owns about one-fourth of the shares of publicly traded Occidental.

In conjunction with Carbon Engineering, Occidental’s 1PointFive is building Stratos, the world’s largest DAC plant. The Ector County facility, scheduled to begin operating in mid-2025, is projected to extract up to 500,000 metric tons of carbon dioxide from the air each year. It’s anticipated that Stratos will employ more than 1,000 people during construction and up to 75 people once the plant is up and running.

Occidental and Carbon Engineering are adapting Stratos’ engineering and design features for a DAC plant to be built on a site at South Texas’ King Ranch. The South Texas DAC Hub, which is on track to create about 2,500 jobs, recently received a roughly $600 million grant from the U.S. Department of Energy (DOE).

1PointFive plans to open as many as 135 DAC facilities around the world by 2035, with the capacity to capture 100 million metric tons of carbon dioxide (CO2) per year.

DAC technology pulls carbon dioxide emissions from the atmosphere at any location and permanently stores the CO2 or uses it for other purposes. By contrast, carbon capture sucks carbon dioxide from the air near where emissions are generated and then permanently stores the CO2 or uses it for other purposes.

A DAC system vacuums about 50 percent to 60 percent of the carbon dioxide from the air that passes through the system’s fans.

DAC “is shaping up to be a key component of meeting net-zero emissions goals in the United States,” according to the National Renewable Energy Laboratory.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ERCOT to capture big share of U.S. solar power growth through 2027

solar growth

Much of the country’s growth in utility-scale solar power generation will happen in the grid operated by the Electric Reliability Council of Texas (ERCOT), according to a new forecast.

The U.S. Energy Information Administration (EIA) predicts that solar power supplied to the ERCOT grid will jump from 56 billion kilowatt-hours in 2025 to 106 billion kilowatt-hours by the end of 2027. That would be an increase of 89 percent.

In tandem with the rapid embrace of solar power, EIA anticipates battery storage capacity for ERCOT will expand from 15 gigawatts in 2025 to 37 gigawatts by the end of 2027, or 147 percent.

EIA expects utility-scale solar to be the country’s fastest-growing source of power generation from 2025 to 2027. It anticipates that this source will climb from 290 billion kilowatt-hours last year to 424 billion kilowatt-hours next year, or 46 percent.

Based on EIA’s projections, ERCOT’s territory would account for one-fourth of the country’s utility-scale solar power generation by the end of next year.

“Solar power and energy storage are the fastest-growing grid technologies in Texas, and can be deployed more quickly than any other generation resource,” according to the Texas Solar + Storage Association. “In the wholesale market, solar and storage are increasing grid reliability, delivering consumer affordability, and driving tax revenue and income streams into rural Texas.”

Expert: Why Texas must make energy transmission a top priority in 2026

guest column

Texas takes pride in running one of the most dynamic and deregulated energy markets in the world, but conversations about electricity rarely focus on what keeps it moving: transmission infrastructure.

As ERCOT projects unprecedented electricity demand growth and grid operators update their forecasts for 2026, it’s becoming increasingly clear that generation, whether renewable or fossil, is only part of the solution. Transmission buildout and sound governing policy now stand as the linchpin for reliability, cost containment, and long-term resilience in a grid under unprecedented stress.

At the heart of this urgency is one simple thing: demand. Over 2024 and 2025, ERCOT has been breaking records at a pace we haven’t seen before. From January through September of 2025 alone, electricity use jumped more than 5% over the year before, the fastest growth of any major U.S. grid. And it’s not slowing down.

The Energy Information Administration expects demand to climb another 14% in 2026, pushing total consumption to roughly 425 terawatt-hours in just the first nine months. That surge isn’t just about more people moving to Texas or running their homes differently; it’s being driven by massive industrial and technology loads that simply weren’t part of the equation ten years ago.

The most dramatic contributor to that rising demand is large-scale infrastructure such as data centers, cloud computing campuses, crypto mining facilities, and electrified industrial sectors. In the latest ERCOT planning update, more than 233 gigawatts of total “large load” interconnection requests were being tracked, an almost 300% jump over just a year earlier, with more than 70% of those requests tied to data centers.

Imagine hundreds of new power plants requesting to connect to the grid, all demanding uninterrupted power 24/7. That’s the scale of the transition Texas is facing, and it’s one of the major reasons transmission planning is no longer back-of-house policy talk but a central grid imperative.

Yet transmission is complicated, costly, and inherently long-lead. It takes three to six years to build new transmission infrastructure, compared with six to twelve months to add a new load or generation project.

This is where Texas will feel the most tension. Current infrastructure can add customers and power plants quickly, but the lines to connect them reliably take time, money, permitting, and political will.

To address these impending needs, ERCOT wrapped up its 2024 Regional Transmission Plan (RTP) at the end of last year, and the message was pretty clear: we’ve got work to do. The plan calls for 274 transmission projects and about 6,000 miles of new, rebuilt, or upgraded lines just to handle the growth coming our way and keep the lights on.

The plan also suggests upgrading to 765-kilovolt transmission lines, a big step beyond the standard 345-kV system. When you start talking about 765-kilovolt transmission lines, that’s a big leap from what Texas normally uses. Those lines are built to move a massive amount of power over long distances, but they’re expensive and complicated, so they’re only considered when planners expect demand to grow far beyond normal levels. Recommending them is a clear signal that incremental upgrades won’t be enough to keep up with where electricity demand is headed.

There’s a reason transmission is suddenly getting so much attention. ERCOT and just about every industry analyst watching Texas are projecting that electricity demand could climb as high as 218 gigawatts by 2031 if even a portion of the massive queue of large-load projects actually comes online. When you focus only on what’s likely to get built, the takeaway is the same: demand is going to stay well above anything we’ve seen before, driven largely by the steady expansion of data centers, cloud computing, and digital infrastructure across the state.

Ultimately, the decisions Texas makes on transmission investment and the policies that determine how those costs are allocated will shape whether 2026 and the years ahead bring greater stability or continued volatility to the grid. Thoughtful planning can support growth while protecting reliability and affordability, but falling short risks making volatility a lasting feature of Texas’s energy landscape.

Transmission Policy: The Other Half of the Equation

Infrastructure investment delivers results only when paired with policies that allow it to operate efficiently and at scale. Recognizing that markets alone won’t solve these challenges, Texas lawmakers and regulators have started creating guardrails.

For example, Senate Bill 6, now part of state law, aims to improve how large energy consumers are managed on the grid, including new rules for data center operations during emergencies and requirements around interconnection. Data centers may even be required to disconnect under extreme conditions to protect overall system reliability, a novel and necessary rule given their scale.

Similarly, House Bill 5066 changed how load forecasting occurs by requiring ERCOT to include utility-reported projections in its planning processes, ensuring transmission planning incorporates real-world expectations. These policy updates matter because grid planning isn’t just a technical checklist. It’s about making sure investment incentives, permitting decisions, and cost-sharing rules are aligned so Texas can grow its economy without putting unnecessary pressure on consumers.

Without thoughtful policy, we risk repeating past grid management mistakes. For example, if transmission projects are delayed or underfunded while new high-demand loads come online, we could see congestion worsen. If that happens, affordable electricity would be located farther from where it’s needed, limiting access to low-cost power for consumers and slowing overall economic growth. That’s especially critical in regions like Houston, where energy costs are already a hot topic for households and businesses alike.

A 2026 View: Strategy Over Shortage

As we look toward 2026, here are the transmission and policy trends that matter most:

  • Pipeline of Projects Must Stay on Track: ERCOT’s RTP is ambitious, and keeping those 274 projects, thousands of circuit miles, and next-generation 765-kV lines moving is crucial for reliability and cost containment.
  • Large Load Forecasting Must Be Nuanced: The explosion in large-load interconnection requests, whether or not every project materializes, signals demand pressure that transmission planners cannot ignore. Building lines ahead of realized demand is not wasteful planning; it’s insurance against cost and reliability breakdowns.
  • Policy Frameworks Must Evolve: Laws like SB 6 and HB 5066 are just the beginning. Texas needs transparent rules for cost allocation, interconnection standards, and emergency protocols that keep consumers protected while supporting innovation and economic growth.
  • Coordination Among Stakeholders Is Critical: Transmission doesn’t stop at one utility’s borders. Regional cooperation among utilities, ERCOT, and local stakeholders is essential to manage congestion and develop systemwide reliability solutions.

Here’s the bottom line: Generation gets the headlines, but transmission makes the grid work. Without a robust transmission buildout and thoughtful governance, even the most advanced generation mix that includes wind, solar, gas, and storage will struggle to deliver the reliability Texans expect at a price they can afford.

In 2026, Texas is not merely testing its grid’s capacity to produce power; it’s testing its ability to move that power where it’s needed most. How we rise to meet that challenge will define the next decade of energy in the Lone Star State.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.