It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin. Photo via exxonmobil.com

ExxonMobil has upgraded its Permian Basin fleet of trucks with sustainability in mind.

The Houston-headquartered company announced a new pilot program last week, rolling out 10 new all-electric pickup trucks at its Cowboy Central Delivery Point in southeast New Mexico. It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin.

“We expect these EV trucks will require less maintenance, which will help reduce cost, while also contributing to our plan to achieve net zero Scope 1 and 2 emissions in our Permian operations by 2030," Kartik Garg, ExxonMobil's New Mexico production manager, says in a news release.

ExxonMobil has already deployed EV trucks at its facilities in Baytown, Beaumont, and Baton Rouge, but the Permian Basin, which accounts for about half of ExxonMobil's total U.S. oil production, is a larger site. The company reports that "a typical vehicle there can log 30,000 miles a year."

The EV rollout comes after the company announced last year that it plans to be a major supplier of lithium for EV battery technology.

At the end of last year, ExxonMobil increased its financial commitment to implementing more sustainable solutions. The company reported that it is pursuing more than $20 billion of lower-emissions opportunities through 2027.

Cowboys and the EVs of the Permian Basin | ExxonMobilyoutu.be

By understanding the barriers they encounter, leaders, managers, and recruiters can implement targeted strategies to create more inclusive and diverse work environments. Photo via Getty Images

Houston expert analyzes women's role, challenges in the energy industry

guest column

The Women in Energy Global Study is an annual guide that delivers insights on how to retain female talent in a challenging world. It’s a critical roadmap for business leaders, managers, recruiters, and diversity and inclusion professionals to what women want, need, and can offer in the global energy workplace.

The report dives into the data to reveal the nature and aspirations of the female energy workforce. It explores the kids of jobs women are doing and the level of seniority that they are reaching, the career issues they face, what motivates them to contribute their skills to the energy transition and what they need to truly thrive.

The energy transition was a strong thread running through this year’s global survey with a commitment to Net Zero being the stand-out factor that attracts women to a company. Respondents came from an even greater variety of sectors and roles both within and outside the energy industry, reflecting the growing richness and complexity of energy today and the exciting new opportunities it offers.

This year's results showed that oil and gas is the largest employer of women, followed by renewables, and most respondents have reached middle-management level in their career. However, there are still more women than men at the bottom and more men at the top. Women are more likely to be in project management, while men are more likely to be in engineering, and only 6 percent of field services roles are held by women.

Work-life interface and flexibility

Employers appear to be rolling back some of the flexible working policies introduced during the COVID-19 pandemic yet offering options for where and when work is an important value proposition for any company wanting to attract and retain talent.

The good news is that most men and women feel they now have a good work life balance, a positive shift from last year when most said they didn't. Women said that better flexible working would make the most difference to work-life balance.

Attracting and developing diverse talent and helping women thrive

Companies’ commitment to DEI appears to be declining, a reversal in trend from previous years. If this is more than just lack of visibility of what has become "business as usual," then organizations need to remember that better DEI leads to better business performance and it is critical to communicate efforts in this area.

Key things women want from their employer are better professional development, sponsorship and mentoring, flexible working and the opportunity for job-share or part-time working, but there appears to be delivery gap between availability of policies and their uptake.

The demand for good paternity leave is huge among men – more than half said they wanted to see it introduced or improved – and this could be a gamechanger for both sexes. Additionally, a strong commitment to net zero still makes a company more attractive to both women and men. Other key factors for women when choosing their employer are an inclusive workplace culture, benefits and a commitment to DEI.

Time to pave the way

When we amplify the voices of women in the global energy market, we not only bring attention to the challenges they face but also highlight the vast potential they hold. By understanding the barriers they encounter, leaders, managers, and recruiters can implement targeted strategies to create more inclusive and diverse work environments. This not only benefits women in the industry but also fosters innovation and drives growth in our ever-evolving energy sector. As we pave the way for more opportunities and empowerment for women in energy, we are shaping a brighter and more sustainable future for all.

———

Jayne Stewart is vice president of oil, gas and chemicals across the Gulf Coast region in the U.S. for NES Fircroft. She is based in Houston.

The new supercomputer is expected to be one of the world’s most powerful owned by an enterprise. Photo courtesy of HPE

Houston tech co. to build powerful supercomputer for global energy business to help reach net-zero goals

getting upgraded

A Houston tech company is building a next-generation supercomputer for one of the world’s largest energy providers.

Hewlett Packard Enterprise announced its plans to build HPC6 for Italian energy company Eni. Eni will use the system to advance scientific discovery and engineering toward accelerating innovation in energy transition to help aid its goal in getting to net zero. HPC6 is expected to be one of the world’s most powerful supercomputers owned by an enterprise.

HPC6 will be built with the same innovations that power the world’s fastest supercomputer to support data and image-intensive workloads across artificial intelligence, modeling, and simulation. According to a news release from HPE, the system will “augment Eni’s existing research that is focused on studying and identifying new energy sources, including renewable energy.”

Eni’s HPC6 will be installed in the company’s energy Green Data Center in Italy. The center will be upgraded to support HPE’s direct liquid-cooling (DLC) capabilities.

"Businesses are finding themselves balancing the huge business opportunities enabled by their AI investments with the responsibility of mitigating the environmental impact of these powerful systems," Antonio Neri, president and CEO of HPE, says in a news release.

"As the leader in developing energy efficient AI and supercomputing solutions, HPE is uniquely positioned to help organizations minimize power consumption while maximizing business outcomes," he continues. "We are excited to play a role in Eni’s commitment to decarbonization supported by digitalization and innovation."

Originally announced in 2020, HPE moved its headquarters to Houston in 2022.

Scott Nyquist on what the path to net-zero will look like. Graphic via mckinsey.com

Column: Houston expert on what the path to net-zero will look like

guest column

The $275 trillion question: What does the road to net-zero look like?

That’s a good question, and McKinsey took a serious stab at providing an answer in a 2022 report, it considers the net-zero scenario described by the Network for Greening the Financial System (NGFS), a consortium of 105 central banks and financial institutions. McKinsey then describes the costs, benefits, and social and economic changes that would likely be required for the world to start, stay on, and finish the pathway described by the NGFS.

Here is what the report isn’t, and what it doesn’t do. It isn’t a roadmap to net zero, and it does not make predictions. Rather, it offers estimates related to one specific scenario. It does not say who should pay. It does not address adaptation. It doesn’t even assume that restricting global temperature rises to 1.5 degrees Celsius by 2050 is achievable. It doesn’t assert that this is the best or only way to of. Indeed, it notes that “it is likely that real outcomes will diverge from these estimates.”

What the report does do is more interesting: with rigor and thoughtfulness, it thinks through what a genuine, global effort to get to net zero would take. Here are a few insights from the report I found particularly noteworthy.

It won’t come cheap. Capital spending by 2050 under the NGFS scenario would add up to $275 trillion, or $9.2 trillion per year on average. That is about $3.5 trillion a year more than is being spent today, or the equivalent of about half of global corporate profits in 2020. In addition, about $1 trillion of current spending would need to shift from high- to low-emissions assets. In short, it’s a lot of money. Of course, some of these costs are also investments that will deliver returns, and indeed the share that do so will probably rise over the decades. Upfront spending now could also reduce operating costs down the line, through greater efficiency and lower maintenance costs. And it’s important to keep in mind the considerable benefit of a healthier planet and a stable climate, with cleaner air and richer land. But the authors do not shy away from the larger point: “Reaching net-zero emissions will thus require a transformation of the global economy.”

Some countries are going to be hit harder than others. It’s hardly surprising to read that countries like Saudi Arabia, Russia, and Venezuela, which rely heavily on oil and gas resources, are going to have a more difficult time adjusting. The same is true for many developing economies. To some extent their residents can leapfrog to cleaner, greener technologies, just as they skipped the landline in favor of cellphones. But other factors weigh in. For example, developing countries are more likely to have high-emissions manufacturing as a major share of the economy; services are generally lower emission. In addition, poorer countries still have to build much of their infrastructure, which is costly. All this adds up. The report estimates that India and sub-Saharan Africa would need to spend almost 11 percent of its GDP on physical assets related to energy and land to get to net zero; in other Asian countries and Latin America, it is more than 9 percent. For Europe and the United States, by contrast, the figure is about 6 percent.

Now is better than later. An orderly, gradual transition would likely be both gentler and cheaper than a hasty, disorderly one. The report sees spending as “frontloaded,” meaning that there is more of it in the next decade to 15 years, and then it declines. That is because of the need for substantial capital investment. But why does this matter? There is timing, for one thing. If low emissions sources do not increase as fast (or preferably faster) than high-emissions ones are retired, there will be shortages or price rises. Both would be unpleasant, and could also cut into public support for change. And then there is the matter of money. If a coal plant is built today—as many are—and then has to be shut down, abruptly and well before its useful life over, a lot of money that was invested in it will never be recouped. The report estimates that as much as $2.1 trillion assets in the power sector alone could be stranded by 2050. Many of these assets are capitalized on the balance sheets of listed companies; shutting them down prematurely could bring bankruptcies and credit defaults, and that could affect the global financial system.

The world would look very different. Under the NGFS scenario, oil and gas production volumes in 2050 would be 55 percent and 70 percent lower, respectively, and coal would just about vanish. The market share for battery or fuel cell-electric vehicles would be close to 100 percent. Many existing jobs would disappear, and because these assets tend to be geographically concentrated, the effects on local communities would be harsh. For example, more than 10 percent of jobs in 44 US counties are in the coal, oil and gas, fossil fuel power, and automotive sectors. On the whole, McKinsey estimates that the transition could mean the loss of 187 million jobs—but the creation of 202 million new ones. Reaching net zero would also make demands on individuals, such as switching to electric vehicles, making their homes more energy efficient, and eating less meat like beef and lamb (cows and sheep are ruminants, emitting methane, a greenhouse gas).

There’s a lot else worth thinking about in the report, which goes into some detail about forestry and agriculture, for example, as well as the role of climate finance and what can be done to fill technology gaps. And its closing sentence is worth pondering: “The key issue is whether the world can muster the requisite boldness and resolve to broaden its response during the next decade or so, which will in all likelihood decide the nature of the transition.”

So, is something like this going to happen? I don’t know. There is certainly momentum. As of January 27, 2022, 136 countries accounting for almost 90 percent of both emissions and GDP, have signed up to the idea. But these pledges are not cast in stone, or indeed in legislation, in many places, and as a rule policy is running far short of the promise. “Moving to action,” the report notes dryly, “has not proven easy or straightforward.”

And while some things can be done from the top down, others cannot—such as the considerable shift in human diets away from high-emissions (and delicious) beef and lamb and more toward poultry and legumes. Moreover, inertia and vested interests are powerful forces. “Government and business would need to act together with singular unity, resolve, and ingenuity, and extend their planning and investment horizons even as they take immediate actions to manage risks and capture opportunities,” the report concludes. That’s a big ask.

So, like McKinsey, I am not going to make predictions. But for an analysis of what it would take, this is a valuable effort.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on January 28, 2022.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Energy industry veteran named CEO of Houston hydrogen co.

GOOD AS GOLD

Cleantech startup Gold H2, a spinout of Houston-based energy biotech company Cemvita, has named oil and gas industry veteran Prabhdeep Singh Sekhon as its CEO.

Sekhon previously held roles at companies such as NextEra Energy Resources and Hess. Most recently, he was a leader on NextEra’s strategy and business development team.

Gold H2 uses microbes to convert oil and gas in old, uneconomical wells into clean hydrogen. The approach to generating clean hydrogen is part of a multibillion-dollar market.

Gold H2 spun out of Cemvita last year with Moji Karimi, co-founder of Cemvita, leading the transition. Gold H2 spun out after successfully piloting its microbial hydrogen technology, producing hydrogen below 80 cents per kilogram.

The Gold H2 venture had been a business unit within Cemvita.

“I was drawn to Gold H2 because of its innovative mission to support the U.S. economy in this historical energy transition,” Sekhon says in a news release. “Over the last few years, my team [at NextEra] was heavily focused on the commercialization of clean hydrogen. When I came across Gold H2, it was clear that it was superior to each of its counterparts in both cost and [carbon intensity].”

Gold H2 explains that oil and gas companies have wrestled for decades with what to do with exhausted oil fields. With Gold H2’s first-of-its-kind biotechnology, these companies can find productive uses for oil wells by producing clean hydrogen at a low cost, the startup says.

“There is so much opportunity ahead of Gold H2 as the first company to use microbes in the subsurface to create a clean energy source,” Sekhon says. “Driving this dynamic industry change to empower clean hydrogen fuel production will be extremely rewarding.”

–––

This article originally ran on InnovationMap.

Q&A: CEO of bp-acquired RNG producer on energy sustainability, stability

the view from heti

bp’s Archaea Energy is the largest renewable natural gas (RNG) producer in the U.S., with an industry leading RNG platform and expertise in developing, constructing and operating RNG facilities to capture waste emissions and convert them into low carbon fuel.

Archaea partners with landfill owners, farmers and other facilities to help them transform their feedstock sources into RNG and convert these facilities into renewable energy centers.

Starlee Sykes, Archaea Energy’s CEO, shared more about bp’s acquisition of the company and their vision for the future.

HETI: bp completed its acquisition of Archaea in December 2022. What is the significance of this acquisition for bp, and how does it bolster Archaea’s mission to create sustainability and stability for future generations?  

Starlee Sykes: The acquisition was an important move to accelerate and grow our plans for bp’s bioenergy transition growth engine, one of five strategic transition growth engines. Archaea will not only play a pivotal role in bp’s transition and ambition to reach net zero by 2050 or sooner but is a key part of bp’s plan to increase biogas supply volumes.

HETI: Tell us more about how renewable natural gas is used and why it’s an important component of the energy transition?  

SS: Renewable natural gas (RNG) is a type of biogas generated by decomposing organic material at landfill sites, anaerobic digesters and other waste facilities – and demand for it is growing. Our facilities convert waste emissions into renewable natural gas. RNG is a lower carbon fuel, which according to the EPA can help reduce emissions, improve local air quality, and provide fuel for homes, businesses and transportation. Our process creates a productive use for methane which would otherwise be burned or vented to the atmosphere. And in doing so, we displace traditional fossil fuels from the energy system.

HETI: Archaea recently brought online a first-of-its-kind RNG plant in Medora, Indiana. Can you tell us more about the launch and why it’s such a significant milestone for the company?  

SS:Archaea’s Medora plant came online in October 2023 – it was the first Archaea RNG plant to come online since bp’s acquisition. At Medora, we deployed the Archaea Modular Design (AMD) which streamlines and accelerates the time it takes to build our plants. Traditionally, RNG plants have been custom-built, but AMD allows plants to be built on skids with interchangeable components for faster builds.

HETI: Now that the Medora plant is online, what does the future hold? What are some of Archaea’s priorities over the next 12 months and beyond?  

SS: We plan to bring online around 15 RNG plants in each of 2024 and 2025. Archaea has a development pipeline of more than 80 projects that underpin the potential for around five-fold growth in RNG production by 2030.

We will continue to operate around 50 sites across the US – including RNG plants, digesters and landfill gas-to-electric facilities.

And we are looking to the future. For example, at our Assai plant in Pennsylvania, the largest RNG plant in the US, we are in the planning stages to drill a carbon capture sequestration (CCS) appraisal well to determine if carbon dioxide sequestration could be feasible at this site, really demonstrating our commitment to decarbonization and the optionality in value we have across our portfolio.

HETI: bp has had an office in Washington, DC for many years. Can you tell us more about the role that legislation has to play in the energy transition? 

SS: Policy can play a critical role in advancing the energy transition, providing the necessary support to accelerate reductions in greenhouse gas emissions. We actively advocate for such policies through direct lobbying, formal comments and testimony, communications activities and advertising. We also advocate with regulators to help inform their rulemakings, as with the US Environmental Protection Agency to support the finalization of a well-designed electric Renewable Identification Number (eRIN) program.

HETI: Science and innovation are key drivers of the energy transition. In your view, what are some of most exciting innovations supporting the goal to reach net-zero emissions?  

SS: We don’t just talk about innovation in bp, we do it – and have been for many years. This track record gives us confidence in continuing to transform, change and innovate at pace and scale. The Archaea Modular Design is a great example of the type of innovation that bp supports which enables us to pursue our goal of net-zero emissions.

Beyond Archaea, we have engineers and scientists across bp who are working on innovative solutions with the goal of lowering emissions. We believe that we need to invest in lower carbon energy to meet the world’s climate objectives, but we also need to invest in today’s energy system, which is primarily hydrocarbon focused. It’s an ‘and’ not ‘or’ approach, and we need both to be successful.

Learn more about Archaea and the work they are doing in energy transition.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Chevron, TotalEnergies back energy storage startup's $15.8M series A

money moves

A California startup that's revolutionizing polymer cathode battery technology has announced its series A round of funding with support from Houston-based energy transition leaders.

LiNova Energy Inc. closed a $15.8 million series A round led by Catalus Capital. Saft, a subsidiary of TotalEnergies, which has its US HQ in Houston, and Houston-based Chevron Technology Ventures, also participated in the round with a coalition of other investors.

LiNova will use the funds with its polymer cathode battery to advance the energy storage landscape, according to the company. The company uses a high-energy polymer battery technology that is designed to allow material replacement of the traditional cathode that is made up of cobalt, nickel, and other materials.

The joint development agreement with Saft will have them collaborate to develop the battery technology for commercialization in Saft's key markets.

“We are proud to collaborate with LiNova in scaling up its technology, leveraging the extensive experience of Saft's research teams, our newest prototype lines, and our industrial expertise in battery cell production," Cedric Duclos, CEO of Saft, says in a news release.

CTV recently announced its $500 million Future Energy Fund III, which aims to lead on emerging mobility, energy decentralization, industrial decarbonization, and the growing circular economy. Chevron has promised to spend $10 billion on lower carbon energy investments and projects by 2028.