Vibhu Sharma, founder and CEO of InnoVent Renewables, saw a huge opportunity for cleaner tire waste. Photo via LinkedIn

Vibhu Sharma observed a huge sustainability problem within the automotive industry, and he was tired of no one doing anything about it.

"Globally, humans dispose 1 billion tires every year," Sharma says on the Houston Innovators Podcast. "It's a massive environmental and public health problem because these tires can take hundreds of years to break down, and what they start doing is leaking chemicals into the soil."

Today, 98 percent of all tires end up in landfills, Sharma says, and this waste contributes to a multitude of problems — from mosquito and pest infestation to chemical leaks and fire hazards. That's why he founded InnoVent Renewables, a Houston-based company that uses its proprietary continuous pyrolysis technology to convert waste tires into valuable fuels, steel, and chemicals.

While the process of pyrolysis — decomposing materials using high heat — isn't new, InnoVent's process has a potential to be uniquely impactful. As Sharma explains on the show, he's targeting areas with an existing supply of waste tires. The company's first plant — located in Monterrey, Mexico — is expected to go online early in the new year, an impressive accomplishment considering Sharma started his company just over a year ago and bootstrapped the business with only a friends and family round of funding.

"It's about 16 months or so from start to commercial operations, which is phenomenal when you consider what it takes to build and operate a chemical or petrochemical facility," Sharma says.

Currently, with the facility close to operations, Sharma is looking to secure customers for the plant's products — which includes diesel, steel, and carbon black — and he doesn't have to look too far out of the automotive industry for his potential customer base. Additionally, the plant should be net zero by day one, since Sharma says he will be using the output to fuel operations.

While the first facility is in Mexico, Sharma says they are already looking at potential secondary locations with Texas at the top of his list. Houston, where Sharma has worked for 26 years, has been a strategic headquarters for InnoVent.

"When it came to doing the research and development, we were able to work with experts in the Houston and Texas areas to test out our idea and validate it," Sharma says. "One thing that gets under appreciated about Houston is how well it's connected to the rest of the world. There are so many direct connections between Houston and Latin America, as well as Europe, Middle East, and Asia."

"I also find that the Houston ecosystem is very supportive of new companies and helping them grow," he adds.

———

This article originally ran on InnovationMap.

Vaulted Deep, Mati Carbon, and Climate Robotics secured finalists spots in XPRIZE's four-year global competition is designed to combat climate change with innovative solutions. Photo via Getty Images

3 Houston clean energy startups advance in Elon Musk-backed cleantech competition

finalists

Twenty promising climatetech companies were selected to advance to the final stage of a global competition backed by Elon Musk's foundation — and three of the finalists hail from Houston.

Vaulted Deep, Mati Carbon, and Climate Robotics secured finalists spots in XPRIZE's four-year global competition is designed to combat climate change with innovative solutions. XPRIZE Carbon Removal will offer $100 million to innovators who are creating solutions that removes carbon dioxide directly from the atmosphere or the oceans, and then sequester it sustainably.

"For the world to effectively address greenhouse gas emissions, carbon removal is an essential element of the path to Net Zero. There's no way to reverse humanity's impact on the climate without extracting carbon from our atmosphere and oceans," Anousheh Ansari, CEO of XPRIZE, says in a news release. "We need a range of bold, innovative CDR solutions to manage the vast quantities of CO2 released into our environment and impacting our planet.

"The teams that have been competing for this Prize are all part of building a set of robust and effective solutions and our 20 teams advancing to the final stage of XPRIZE Carbon Removal will have an opportunity to demonstrate their potential to have a significant impact on the climate," Ansari continues.

The finalists — categorized into four sections: air, rocks, oceans, and land — were selected based upon their performance in three key areas: operations, sustainability, and cost. The full list of 20 finalists is available online.

Around 20 Houston-area companies were initially identified by the challenge. Here's a look at the three that are advancing to the finals:

  • Mati, in the Rocks category, durably removes carbon from the atmosphere using basalt based enhanced rock weathering (ERW) in smallholder rice paddy farms. This process, which is being demonstrated in India, removes atmospheric CO2 while adding key nutrients in the soil helping to restore degraded soils to benefit smallholder farmers.
  • Climate Robotics, in the Land category, enables broad-scale agriculture adoption of biochar which builds soil health and removes excess carbon from the atmosphere. The company's mobile technology converts crop residues into durable biochar on the fly and in the field, making the economics work for farmers and our ecosystems.
  • Vaulted Deep, also in the Land category, delivers scalable, permanent, carbon removal by geologically sequestering carbon-filled organic wastes. Their patented slurry sequestration, which involves the geological injection of minimally processed wastes for permanent (10,000+ year) carbon removal.

"This cohort of exceptional teams represents a diversity of innovations and solutions across a range of CDR pathways, and shows the significant progress the industry is making in a short period of time," Nikki Batchelor, executive director of XPRIZE Carbon Removal, says in the release. "Over the past three years, this competition has helped accelerate the pace of technology development for a whole new industry of high-potential solutions aimed at reversing climate change."

It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin. Photo via exxonmobil.com

ExxonMobil revs up EV pilot in Permian Basin

seeing green

ExxonMobil has upgraded its Permian Basin fleet of trucks with sustainability in mind.

The Houston-headquartered company announced a new pilot program last week, rolling out 10 new all-electric pickup trucks at its Cowboy Central Delivery Point in southeast New Mexico. It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin.

“We expect these EV trucks will require less maintenance, which will help reduce cost, while also contributing to our plan to achieve net zero Scope 1 and 2 emissions in our Permian operations by 2030," Kartik Garg, ExxonMobil's New Mexico production manager, says in a news release.

ExxonMobil has already deployed EV trucks at its facilities in Baytown, Beaumont, and Baton Rouge, but the Permian Basin, which accounts for about half of ExxonMobil's total U.S. oil production, is a larger site. The company reports that "a typical vehicle there can log 30,000 miles a year."

The EV rollout comes after the company announced last year that it plans to be a major supplier of lithium for EV battery technology.

At the end of last year, ExxonMobil increased its financial commitment to implementing more sustainable solutions. The company reported that it is pursuing more than $20 billion of lower-emissions opportunities through 2027.

Cowboys and the EVs of the Permian Basin | ExxonMobilyoutu.be

By understanding the barriers they encounter, leaders, managers, and recruiters can implement targeted strategies to create more inclusive and diverse work environments. Photo via Getty Images

Houston expert analyzes women's role, challenges in the energy industry

guest column

The Women in Energy Global Study is an annual guide that delivers insights on how to retain female talent in a challenging world. It’s a critical roadmap for business leaders, managers, recruiters, and diversity and inclusion professionals to what women want, need, and can offer in the global energy workplace.

The report dives into the data to reveal the nature and aspirations of the female energy workforce. It explores the kids of jobs women are doing and the level of seniority that they are reaching, the career issues they face, what motivates them to contribute their skills to the energy transition and what they need to truly thrive.

The energy transition was a strong thread running through this year’s global survey with a commitment to Net Zero being the stand-out factor that attracts women to a company. Respondents came from an even greater variety of sectors and roles both within and outside the energy industry, reflecting the growing richness and complexity of energy today and the exciting new opportunities it offers.

This year's results showed that oil and gas is the largest employer of women, followed by renewables, and most respondents have reached middle-management level in their career. However, there are still more women than men at the bottom and more men at the top. Women are more likely to be in project management, while men are more likely to be in engineering, and only 6 percent of field services roles are held by women.

Work-life interface and flexibility

Employers appear to be rolling back some of the flexible working policies introduced during the COVID-19 pandemic yet offering options for where and when work is an important value proposition for any company wanting to attract and retain talent.

The good news is that most men and women feel they now have a good work life balance, a positive shift from last year when most said they didn't. Women said that better flexible working would make the most difference to work-life balance.

Attracting and developing diverse talent and helping women thrive

Companies’ commitment to DEI appears to be declining, a reversal in trend from previous years. If this is more than just lack of visibility of what has become "business as usual," then organizations need to remember that better DEI leads to better business performance and it is critical to communicate efforts in this area.

Key things women want from their employer are better professional development, sponsorship and mentoring, flexible working and the opportunity for job-share or part-time working, but there appears to be delivery gap between availability of policies and their uptake.

The demand for good paternity leave is huge among men – more than half said they wanted to see it introduced or improved – and this could be a gamechanger for both sexes. Additionally, a strong commitment to net zero still makes a company more attractive to both women and men. Other key factors for women when choosing their employer are an inclusive workplace culture, benefits and a commitment to DEI.

Time to pave the way

When we amplify the voices of women in the global energy market, we not only bring attention to the challenges they face but also highlight the vast potential they hold. By understanding the barriers they encounter, leaders, managers, and recruiters can implement targeted strategies to create more inclusive and diverse work environments. This not only benefits women in the industry but also fosters innovation and drives growth in our ever-evolving energy sector. As we pave the way for more opportunities and empowerment for women in energy, we are shaping a brighter and more sustainable future for all.

———

Jayne Stewart is vice president of oil, gas and chemicals across the Gulf Coast region in the U.S. for NES Fircroft. She is based in Houston.

The new supercomputer is expected to be one of the world’s most powerful owned by an enterprise. Photo courtesy of HPE

Houston tech co. to build powerful supercomputer for global energy business to help reach net-zero goals

getting upgraded

A Houston tech company is building a next-generation supercomputer for one of the world’s largest energy providers.

Hewlett Packard Enterprise announced its plans to build HPC6 for Italian energy company Eni. Eni will use the system to advance scientific discovery and engineering toward accelerating innovation in energy transition to help aid its goal in getting to net zero. HPC6 is expected to be one of the world’s most powerful supercomputers owned by an enterprise.

HPC6 will be built with the same innovations that power the world’s fastest supercomputer to support data and image-intensive workloads across artificial intelligence, modeling, and simulation. According to a news release from HPE, the system will “augment Eni’s existing research that is focused on studying and identifying new energy sources, including renewable energy.”

Eni’s HPC6 will be installed in the company’s energy Green Data Center in Italy. The center will be upgraded to support HPE’s direct liquid-cooling (DLC) capabilities.

"Businesses are finding themselves balancing the huge business opportunities enabled by their AI investments with the responsibility of mitigating the environmental impact of these powerful systems," Antonio Neri, president and CEO of HPE, says in a news release.

"As the leader in developing energy efficient AI and supercomputing solutions, HPE is uniquely positioned to help organizations minimize power consumption while maximizing business outcomes," he continues. "We are excited to play a role in Eni’s commitment to decarbonization supported by digitalization and innovation."

Originally announced in 2020, HPE moved its headquarters to Houston in 2022.

Scott Nyquist on what the path to net-zero will look like. Graphic via mckinsey.com

Column: Houston expert on what the path to net-zero will look like

guest column

The $275 trillion question: What does the road to net-zero look like?

That’s a good question, and McKinsey took a serious stab at providing an answer in a 2022 report, it considers the net-zero scenario described by the Network for Greening the Financial System (NGFS), a consortium of 105 central banks and financial institutions. McKinsey then describes the costs, benefits, and social and economic changes that would likely be required for the world to start, stay on, and finish the pathway described by the NGFS.

Here is what the report isn’t, and what it doesn’t do. It isn’t a roadmap to net zero, and it does not make predictions. Rather, it offers estimates related to one specific scenario. It does not say who should pay. It does not address adaptation. It doesn’t even assume that restricting global temperature rises to 1.5 degrees Celsius by 2050 is achievable. It doesn’t assert that this is the best or only way to of. Indeed, it notes that “it is likely that real outcomes will diverge from these estimates.”

What the report does do is more interesting: with rigor and thoughtfulness, it thinks through what a genuine, global effort to get to net zero would take. Here are a few insights from the report I found particularly noteworthy.

It won’t come cheap. Capital spending by 2050 under the NGFS scenario would add up to $275 trillion, or $9.2 trillion per year on average. That is about $3.5 trillion a year more than is being spent today, or the equivalent of about half of global corporate profits in 2020. In addition, about $1 trillion of current spending would need to shift from high- to low-emissions assets. In short, it’s a lot of money. Of course, some of these costs are also investments that will deliver returns, and indeed the share that do so will probably rise over the decades. Upfront spending now could also reduce operating costs down the line, through greater efficiency and lower maintenance costs. And it’s important to keep in mind the considerable benefit of a healthier planet and a stable climate, with cleaner air and richer land. But the authors do not shy away from the larger point: “Reaching net-zero emissions will thus require a transformation of the global economy.”

Some countries are going to be hit harder than others. It’s hardly surprising to read that countries like Saudi Arabia, Russia, and Venezuela, which rely heavily on oil and gas resources, are going to have a more difficult time adjusting. The same is true for many developing economies. To some extent their residents can leapfrog to cleaner, greener technologies, just as they skipped the landline in favor of cellphones. But other factors weigh in. For example, developing countries are more likely to have high-emissions manufacturing as a major share of the economy; services are generally lower emission. In addition, poorer countries still have to build much of their infrastructure, which is costly. All this adds up. The report estimates that India and sub-Saharan Africa would need to spend almost 11 percent of its GDP on physical assets related to energy and land to get to net zero; in other Asian countries and Latin America, it is more than 9 percent. For Europe and the United States, by contrast, the figure is about 6 percent.

Now is better than later. An orderly, gradual transition would likely be both gentler and cheaper than a hasty, disorderly one. The report sees spending as “frontloaded,” meaning that there is more of it in the next decade to 15 years, and then it declines. That is because of the need for substantial capital investment. But why does this matter? There is timing, for one thing. If low emissions sources do not increase as fast (or preferably faster) than high-emissions ones are retired, there will be shortages or price rises. Both would be unpleasant, and could also cut into public support for change. And then there is the matter of money. If a coal plant is built today—as many are—and then has to be shut down, abruptly and well before its useful life over, a lot of money that was invested in it will never be recouped. The report estimates that as much as $2.1 trillion assets in the power sector alone could be stranded by 2050. Many of these assets are capitalized on the balance sheets of listed companies; shutting them down prematurely could bring bankruptcies and credit defaults, and that could affect the global financial system.

The world would look very different. Under the NGFS scenario, oil and gas production volumes in 2050 would be 55 percent and 70 percent lower, respectively, and coal would just about vanish. The market share for battery or fuel cell-electric vehicles would be close to 100 percent. Many existing jobs would disappear, and because these assets tend to be geographically concentrated, the effects on local communities would be harsh. For example, more than 10 percent of jobs in 44 US counties are in the coal, oil and gas, fossil fuel power, and automotive sectors. On the whole, McKinsey estimates that the transition could mean the loss of 187 million jobs—but the creation of 202 million new ones. Reaching net zero would also make demands on individuals, such as switching to electric vehicles, making their homes more energy efficient, and eating less meat like beef and lamb (cows and sheep are ruminants, emitting methane, a greenhouse gas).

There’s a lot else worth thinking about in the report, which goes into some detail about forestry and agriculture, for example, as well as the role of climate finance and what can be done to fill technology gaps. And its closing sentence is worth pondering: “The key issue is whether the world can muster the requisite boldness and resolve to broaden its response during the next decade or so, which will in all likelihood decide the nature of the transition.”

So, is something like this going to happen? I don’t know. There is certainly momentum. As of January 27, 2022, 136 countries accounting for almost 90 percent of both emissions and GDP, have signed up to the idea. But these pledges are not cast in stone, or indeed in legislation, in many places, and as a rule policy is running far short of the promise. “Moving to action,” the report notes dryly, “has not proven easy or straightforward.”

And while some things can be done from the top down, others cannot—such as the considerable shift in human diets away from high-emissions (and delicious) beef and lamb and more toward poultry and legumes. Moreover, inertia and vested interests are powerful forces. “Government and business would need to act together with singular unity, resolve, and ingenuity, and extend their planning and investment horizons even as they take immediate actions to manage risks and capture opportunities,” the report concludes. That’s a big ask.

So, like McKinsey, I am not going to make predictions. But for an analysis of what it would take, this is a valuable effort.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on January 28, 2022.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers harness dialysis for new wastewater treatment process

waste not

By employing medical field technology dialysis, researchers at Rice University and the Guangdong University of Technology in China uncovered a new way to treat high-salinity organic wastewater.

In the medical field, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood. In a study published in Nature Water, Rice’s team found that mimicking dialysis can separate salts from organic substances with minimal dilution of the wastewater, addressing some of the limitations of previous methods.

The researchers say this has the potential to lower costs, recover valuable resources across a range of industrial sectors and reduce environmental impacts.

“Traditional methods often demand a lot of energy and require repeated dilutions,” Yuanmiaoliang “Selina” Chen, a co-first author and postdoctoral associate in Elimelech’s lab at Rice, said in a news release. “Dialysis eliminates many of these pain points, reducing water consumption and operational overheads.”

Various industries generate high-salinity organic wastewater, including petrochemical, pharmaceutical and textile manufacturing. The wastewater’s high salt and organic content can present challenges for existing treatment processes. Biological and advanced oxidation treatments become less effective with higher salinity levels. Thermal methods are considered “energy intensive” and susceptible to corrosion.

Ultimately, the researchers found that dialysis effectively removed salt from water without requiring large amounts of fresh water. This process allows salts to move into the dialysate stream while keeping most organic compounds in the original solution. Because dialysis relies on diffusion instead of pressure, salts and organics cross the membrane at different speeds, making the separation method more efficient.

“Dialysis was astonishingly effective in separating the salts from the organics in our trials,” Menachem Elimelech, a corresponding author on the study and professor of civil and environmental engineering and chemical and biomolecular engineering at Rice, said in a news release. “It’s an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges.”

Virtual power plant from Houston-area company debuts at CES

Powering Up

Brookshire, Texas-based decentralized energy solution company AISPEX Inc. debuted its virtual power plant (VPP) platform, known as EnerVision, earlier this month at CES in Las Vegas.

EnerVision offers energy efficiency, savings and performance for residential, commercial and industrial users by combining state-of-the-art hardware with an AI-powered cloud platform. The VPP technology enables users to sell excess energy back to the grid during demand peaks.

AISPEX, or Advanced Integrated Systems for Power Exchange, has evolved from an EV charging solutions company into an energy systems innovator since it was founded in 2018. It focuses on integrating solar energy and decentralized systems to overcome grid limitations, reduce upgrade costs and accelerate electrification.

Regarding grid issues, the company hopes by leveraging decentralized solar power and Battery Energy Storage Systems (BESS), EnerVision can help bring energy generation closer to consumption, which can ease grid strain and enhance stability. EnerVision plans to do this by addressing “aging infrastructure, grid congestion, increasing electrification and the need for resilience against extreme weather and cyber threats,” according to the company.

One of the company's latest VPP products is SuperHub, which is an all-in-one charging station designed to combine components like solar panels, energy storage systems, fast EV chargers, mobile EV chargers and LCD display screens, into a unified, efficient solution.

“It supports clean energy generation and storage but also ensures seamless charging for electric vehicles while providing opportunities for communication or advertising through its built-in displays,” says Vivian Nie, a representative from AISPEX.

Also at CES, AISPEX displayed its REP Services, which offer flexible pricing, peak load management, and renewable energy options for end-to-end solutions, and its Integrated Systems, which combine solar power, battery storage, EV charging and LCD displays.

“We had the opportunity to meet new partners, reconnect with so many old friends, and dive into discussions about the future of e-mobility and energy solutions,” CEO Paul Nie said on LinkedIn.

In 2024, AISPEX installed its DC Fast chargers at two California Volkswagen locations.

Houston-based energy transition leader talks new role, shares future predictions

new hire

For some companies, all that’s needed to make a seismic shift toward innovation is to hire the right person to steer the organization in a transcendent direction.

Arcadis, a sustainable design, engineering, and consultancy solutions company, is channeling this concept by hiring Masjood Jafri as its new National Energy Transition Strategic Advisor and Business Development Lead. In the role, Jafri will help lead and develop the company’s energy transition business growth and strategy for its interests in the United States alongside Matthew Yonkin, National Energy Transition Solution Leader, based in New York.

“I have a fairly diverse background, with about a decade in the energy industry with an oil and gas, power and petrochemicals background,” says Jafri, who moved to Houston from the U.K. back in 2012. “But prior to that, I had about a decade in the infrastructure world, looking into the transportation market, and the manufacturing sector, as well as working as a lender's advisor in the capital market. So, in this very transformative period, you need to connect all the dots.”

With just over six months in his new role, Jafri leverages his 20 years of experience in leading the successful delivery of capital programs and projects as the strategic advisor to Arcadis’ own capital projects.

“Arcadis is on a journey to be the sustainability partner or sustainable transformation partner for our clients,” Jafri says. “And the path to sustainability goes through energy transition. Arcadis has been investing quite heavily in that space for us to be a leading consulting services provider for energy companies.

Jafri’s hire comes as Arcadis moves its business operations in Houston to a new centralized office in the Galleria area. According to Jafri, this will bring the company’s expertise under one roof. With Houston being the energy capital of the world, Jafri says Arcadis is positioned to lead and deliver results for the energy demand in the United States and globally.

“Houston is the Silicon Valley of energy,” Jafri says. “The challenge is to continue to drive with that force. … We have the talent in the city, we have the right mindset—very entrepreneurial, and obviously a lot of capital commitment to make these changes.

“And it is not just coming from the private sector, it is also coming from the public sector. So, I think the stars are aligning in the context of what is needed for us to have a planet-positive future and Houston being suitably positioned to deliver to that,” he adds.

And while keeping up with the demand for energy and moving towards clean energy are equally important challenges, Jafri is more focused on addressing the latter.

“Clean energy is certainly a bigger challenge because it requires a very broad area of energy sources to come together and to make it cleaner,” Jafri says. “Technologically, some of those things are not ready yet, at least to be scalable in a commercial and profitable way. So that's the challenge. I think it is a clean energy challenge, but obviously, the demand side makes it a bit more complicated.”

Texans, and more specifically Houstonians, have seen firsthand the complications of demand and the pitfalls of energy security and resilience. Addressing these issues, along with many other sustainability challenges, will also be part of Jafri’s core mission at Arcadis.

“As we saw in severe climate conditions, the grid is vulnerable and so are the people connected to the grid,” Jafri says. “The better we can make the grid more resilient and more adaptive to these changes, the more satisfactory conditions will be on the ground for people who are affected.”

Jafri asserts that the industry is already considering numerous options, including all colors of hydrogen, solar, wind and geothermal, in addition to fossil-based energy (natural gas). These measures are already in progress, but consumers are concerned with climate change and, of course, the impact on their electricity bills. Still, states like California, Washington and Texas are making progress.

“I would say by the year 2030 you would start to see a pretty significant movement in the right direction,” Jafri says. “If you look from a federal policy perspective, we want to produce 100 percent of the electricity clean by 2035. That is an expected goal, but it’s all happening.”