Thanks to technology advancements, Cemvita is now capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. Photo via cemvita.com

Houston-based biotech company Cemvita has achieved a key production goal five years ahead of schedule.

Thanks to technology advancements, Cemvita is now capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita has quadrupled output at the Houston plant. The company had planned to reach this milestone in 2029.

Cemvita, founded in 2017, says this achievement paves the way for increased production capacity, improved operational efficiency, and an elevated advantage in the sustainable oil market.

“What’s so amazing about synthetic biology is that humans are just scratching the surface of what’s possible,” says Moji Karimi, co-founder and CEO of Cemvita. “Our focus on the first principles has allowed us to design and create new biotech more cheaply and faster than ever before.”

The production achievement follows Cemvita’s recent breakthrough in development of a solvent-free extraction bioprocess.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

———

This article originally ran on InnovationMap.

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Growing Houston biotech company expands leadership as it commercializes sustainable products

onboarding

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos.

Parachin will lead the Cemvita team that’s developing technology for production of bio-manufactured oil.

“It’s a fantastic moment, as we’re poised to take our prototyping to the next level, and all under the innovative direction of our co-founder Tara Karimi,” Parachin says in a news release. “We will be bringing something truly remarkable to market and ensuring it’s cost-effective.”

Moji Karimi, co-founder and CEO of Cemvita, says the hiring of Parachin represents “the natural next step” toward commercializing the startup’s carbon-to-oil process.

“Her background prepared her to bring the best out of the scientists at the inflection point of commercialization — really bringing things to life,” says Moji Karimi, Tara’s brother.

Parachin joins Garcia on Cemvita’s executive team.

Before being promoted to vice president of commercialization, Garcia was the startup’s commercial director and business development manager. He has a background in engineering and business development.

Founded in 2017, Cemvita recently announced a breakthrough that enables production of large quantities of oil derived from carbon waste.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

Prabhdeep Singh Sekhon, who previously held roles at companies such as NextEra Energy Resources and Hess, was named CEO of Gold H2. Photo courtesy of Gold H2

Energy industry veteran named CEO of Houston hydrogen co.

GOOD AS GOLD

Cleantech startup Gold H2, a spinout of Houston-based energy biotech company Cemvita, has named oil and gas industry veteran Prabhdeep Singh Sekhon as its CEO.

Sekhon previously held roles at companies such as NextEra Energy Resources and Hess. Most recently, he was a leader on NextEra’s strategy and business development team.

Gold H2 uses microbes to convert oil and gas in old, uneconomical wells into clean hydrogen. The approach to generating clean hydrogen is part of a multibillion-dollar market.

Gold H2 spun out of Cemvita last year with Moji Karimi, co-founder of Cemvita, leading the transition. Gold H2 spun out after successfully piloting its microbial hydrogen technology, producing hydrogen below 80 cents per kilogram.

The Gold H2 venture had been a business unit within Cemvita.

“I was drawn to Gold H2 because of its innovative mission to support the U.S. economy in this historical energy transition,” Sekhon says in a news release. “Over the last few years, my team [at NextEra] was heavily focused on the commercialization of clean hydrogen. When I came across Gold H2, it was clear that it was superior to each of its counterparts in both cost and [carbon intensity].”

Gold H2 explains that oil and gas companies have wrestled for decades with what to do with exhausted oil fields. With Gold H2’s first-of-its-kind biotechnology, these companies can find productive uses for oil wells by producing clean hydrogen at a low cost, the startup says.

“There is so much opportunity ahead of Gold H2 as the first company to use microbes in the subsurface to create a clean energy source,” Sekhon says. “Driving this dynamic industry change to empower clean hydrogen fuel production will be extremely rewarding.”

–––

This article originally ran on InnovationMap.

Lisa Bromiley has joined Cemvita as CFO. Photo courtesy of Cemvita

Houston sustainable biotech company names new CFO

new hire

A growing Houston carbon utilization company has named its newest C-suite member.

Lisa Bromiley has joined Cemvita as CFO. Bromiley will work on spearheading capital markets, strategic positioning, and financial management of the company.

"We are thrilled to welcome Lisa Bromiley to Cemvita as our CFO,” Moji Karimi, CEO of Cemvita, says in a news release. “She joins us at an inflection point in our growth trajectory and I’m confident that Lisa's strategic financial acumen will play a pivotal role in driving Cemvita's continued success.”

Bromiley brings over two decades of experience in energy and commodity-related finance. She previously played a key role in the development of Flotek Industries Inc. and assisted Northern Oil and Gas, Inc. to achieve a market capitalization of $4 billion. Bromiley holds a Master of Professional Accounting and a Bachelor of Business Administration from the University of Texas. She is also a certified public accountant.

"As the new CFO of Cemvita, I'm very excited to lead the company through a crucial expansion in 2024,” Bromiley says in the news release. “We're moving swiftly from development to commercialization, using our patented microbes to produce sustainable feedstocks from carbon waste. I believe our core mission to recycle carbon waste, including CO2, for profitable industrial feedstock production is vital for a more sustainable world."

Cemvita’s eCO2 recently helped garner the Houston company its spot in the Sustainable Aviation Challenge. The eCO2™ takes waste streams and carbon dioxide and uses them to produce valuable materials like plastics,proteins, and fuel feedstock through microbiology. Cemvita also plans to remove 250 million tons per year from the atmosphere by 2050.
Fresh from COP28, Houston innovator Moji Karimi shared his biggest observations from the event. Photo courtesy of Digital Wildcatters

3 takeaways from COP28 from Houston biotech, sustainability founder

big picture

Before he even had a chance to recover from the jetlag, Moji Karimi was thinking about his biggest takeaways from 2023 United Nations Climate Change Conference or Conference of the Parties, more commonly known as COP28.

Karimi, CEO and co-founder of Cemvita, a biotech company with sustainable solutions for the energy transition, joined the Houston Innovators Podcast this week to discuss what his biggest takeaways were.

"It was a pretty amazing experience," Karimi says, comparing the event to how CERAWeek has evolved to really have a strong presence in its innovation-focused track called Agora. "This year you had a massive section for innovation and sustainability. I think that will become a theme in COP29 and beyond to bring entrepreneurs, investors, and more participating in the event."

Karimi's three big observations are outlined below, as is the full podcast with him sharing more about Cemvita's growth this year.


Expanding the environmental footprint

One of the big things Karimi observed was that there seems to be a rising conversation about not only how carbon emissions are effecting climate change, but that companies and countries need to look more broadly at their environmental impacts.

Specifically, Karimi learned about the new framework Task Force on Nature-Related Financial Disclosures (TNFD), an addition to Task Force on Climate-Related Financial Disclosures (TCFD), which was introduced a few years back.

"TNFD is the new framework to capture non-carbon emissions-related aspects of an impact on the environment, such as biodiversity loss," he says.

Language has evolved to reflect this shift too, Karimi says, referencing "nature-positive tech" and "nature tech." He says he feels like Europe has led the way so far, but in the next year or two the conversations will come to the United States.

"Some of this is driven by COP30 being in Brazil and being focused on biodiversity," he adds.

A major focus on nuclear

Karimi says he saw a lot of support for nuclear energy, which can lower the cost and carbon intensity of power. Personally, Karimi is wondering what happens if and win nuclear is better adapted, solving the current challenges the power industries face.

"What I'm interested in is so many other climate tech applications that are enabled once you have low-cost, and low-carbon power from nuclear energy. That will be interesting to watch," he says.

Actionism, not activism

Lastly, Karimi says he saw a huge push toward action, not simply advocacy. The emphasis on "actionism" included activations for COP28 attendees to share what actions could be taken now.

"The point was to all come together, no matter where you come from, and focus on what actions you can take," he says. "It was interesting to bring people together in a different way. We'll see how that translates into actions from here on."


Two Houston companies have partnered up to explore gold hydrogen technology. Photo via cemvita.com

Sustainable biotech company to test hydrogen production technology with global chemicals leader

seeing gold

Two Houston-area companies have announced a strategic partnership to test a unique hydrogen production technology.

The Woodlands-based ChampionX Corporation (NASDAQ: CHX) and Gold H2 Inc. entered into the partnership on November 9. GH2, a subsidiary of Houston-based Cemvita, provides tailored subsurface microbiology solutions by harnessing the power of microorganisms to enable in-situ hydrogen production from depleted oil and gas wells.

Created with carbon neutrality, the gold hydrogen costs less to create and is more sustainable than its alternatives. Cemvita, a sustainability-focused biotech company, has already seen success from its technology. After successfully completing a pilot test of gold hydrogen in the oil-rich Permian Basin of West Texas, Cemvita raised an undisclosed amount of funding through its Gold H2 spin-out.

ChampionX, a global equipment and services provider for the oil and gas industry, has a suite of services and chemical technologies for optimizing production for reservoirs.

"Could not have asked for a better partner than ChampionX, Victor Keasler and Deric Bryant to helps us bring the Gold H2 technology to life. They are the industry leader in oilfield chemistry and microbiology and we are beyond excited to have them as a collaborator," Cemvita Co-founder and CEO Moji Karimi writes in a LinkedIn post. "I talk about creating a natural resource company of the future and our work at Gold H2 is a perfect example. To learn from subsurface biology and effectively turn the reservoir into a natural bioreactor and proactively biomanufacture end products of interest, integrating upstream with downstream."

Cemvita has had a flurry of corporate partnership announcements this year. In September, the company announced a 20-year off-take agreement with United to provide up to 50 million gallons of sustainable aviation fuel a year across 20 years.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Scientists warn greenhouse gas accumulation is accelerating and more extreme weather will come

Climate Report

Humans are on track to release so much greenhouse gas in less than three years that a key threshold for limiting global warming will be nearly unavoidable, according to a study released June 19.

The report predicts that society will have emitted enough carbon dioxide by early 2028 that crossing an important long-term temperature boundary will be more likely than not. The scientists calculate that by that point there will be enough of the heat-trapping gas in the atmosphere to create a 50-50 chance or greater that the world will be locked in to 1.5 degrees Celsius (2.7 degrees Fahrenheit) of long-term warming since preindustrial times. That level of gas accumulation, which comes from the burning of fuels like gasoline, oil and coal, is sooner than the same group of 60 international scientists calculated in a study last year.

“Things aren’t just getting worse. They’re getting worse faster,” said study co-author Zeke Hausfather of the tech firm Stripe and the climate monitoring group Berkeley Earth. “We’re actively moving in the wrong direction in a critical period of time that we would need to meet our most ambitious climate goals. Some reports, there’s a silver lining. I don’t think there really is one in this one.”

That 1.5 goal, first set in the 2015 Paris agreement, has been a cornerstone of international efforts to curb worsening climate change. Scientists say crossing that limit would mean worse heat waves and droughts, bigger storms and sea-level rise that could imperil small island nations. Over the last 150 years, scientists have established a direct correlation between the release of certain levels of carbon dioxide, along with other greenhouse gases like methane, and specific increases in global temperatures.

In Thursday's Indicators of Global Climate Change report, researchers calculated that society can spew only 143 billion more tons (130 billion metric tons) of carbon dioxide before the 1.5 limit becomes technically inevitable. The world is producing 46 billion tons (42 billion metric tons) a year, so that inevitability should hit around February 2028 because the report is measured from the start of this year, the scientists wrote. The world now stands at about 1.24 degrees Celsius (2.23 degrees Fahrenheit) of long-term warming since preindustrial times, the report said.

Earth's energy imbalance

The report, which was published in the journal Earth System Science Data, shows that the rate of human-caused warming per decade has increased to nearly half a degree (0.27 degrees Celsius) per decade, Hausfather said. And the imbalance between the heat Earth absorbs from the sun and the amount it radiates out to space, a key climate change signal, is accelerating, the report said.

“It's quite a depressing picture unfortunately, where if you look across the indicators, we find that records are really being broken everywhere,” said lead author Piers Forster, director of the Priestley Centre for Climate Futures at the University of Leeds in England. “I can't conceive of a situation where we can really avoid passing 1.5 degrees of very long-term temperature change.”

The increase in emissions from fossil-fuel burning is the main driver. But reduced particle pollution, which includes soot and smog, is another factor because those particles had a cooling effect that masked even more warming from appearing, scientists said. Changes in clouds also factor in. That all shows up in Earth’s energy imbalance, which is now 25% higher than it was just a decade or so ago, Forster said.

Earth’s energy imbalance “is the most important measure of the amount of heat being trapped in the system,” Hausfather said.

Earth keeps absorbing more and more heat than it releases. “It is very clearly accelerating. It’s worrisome,” he said.

Crossing the temperature limit

The planet temporarily passed the key 1.5 limit last year. The world hit 1.52 degrees Celsius (2.74 degrees Fahrenheit) of warming since preindustrial times for an entire year in 2024, but the Paris threshold is meant to be measured over a longer period, usually considered 20 years. Still, the globe could reach that long-term threshold in the next few years even if individual years haven't consistently hit that mark, because of how the Earth's carbon cycle works.

That 1.5 is “a clear limit, a political limit for which countries have decided that beyond which the impact of climate change would be unacceptable to their societies,” said study co-author Joeri Rogelj, a climate scientist at Imperial College London.

The mark is so important because once it is crossed, many small island nations could eventually disappear because of sea level rise, and scientific evidence shows that the impacts become particularly extreme beyond that level, especially hurting poor and vulnerable populations, he said. He added that efforts to curb emissions and the impacts of climate change must continue even if the 1.5 degree threshold is exceeded.

Crossing the threshold "means increasingly more frequent and severe climate extremes of the type we are now seeing all too often in the U.S. and around the world — unprecedented heat waves, extreme hot drought, extreme rainfall events, and bigger storms,” said University of Michigan environment school dean Jonathan Overpeck, who wasn't part of the study.

Andrew Dessler, a Texas A&M University climate scientist who wasn't part of the study, said the 1.5 goal was aspirational and not realistic, so people shouldn’t focus on that particular threshold.

“Missing it does not mean the end of the world,” Dessler said in an email, though he agreed that “each tenth of a degree of warming will bring increasingly worse impacts.”

Chevron enters lithium market with Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.