Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand. Photo via Getty Images

Texas stands out among other states when it comes to energy production.

Even after mass rolling blackouts during Winter Storm Uri in 2021, the Lone Star State produced more electricity than any other state in 2022. However, it also exemplifies how challenging it can be to ensure grid reliability. The following summer, the state’s grid manager, the Electrical Reliability Council of Texas (ERCOT), experienced ten occasions of record-breaking demand.

Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand, as the outages caused by Hurricane Beryl demonstrated.

A bigger storm is brewing

Electric demand is poised to increase exponentially over the next few years. Grid planners nationwide are doubling their five-year load forecast. Texas predicts it will need to provide nearly double the amount of power within six years. These projections anticipate increasing demand from buildings, transportation, manufacturing, data centers, AI and electrification, underscoring the daunting challenges utilities face in maintaining grid reliability and managing rising demand.

However, Texas can accelerate its journey to becoming a grid reliability success story by taking two impactful steps. First, it could do more to encourage the adoption of distributed energy resources (DERs) like residential solar and battery storage to better balance the prodigious amounts of remote grid-scale renewables that have been deployed over the past decade. More DERs mean more local energy resources that can support the grid, especially local distribution circuits that are prone to storm-related outages. Second, by combining DERs with modern demand-side management programs and technology, utilities can access and leverage these additional resources to help them manage peak demand in real time and avoid blackout scenarios.

Near-term strategies and long-term priorities

Increasing electrical capacity with utility-scale renewable energy and storage projects and making necessary electrical infrastructure updates are critical to meet projected demand. However, these projects are complex, resource-intensive and take years to complete. The need for robust demand-side management is more urgent than ever.

Texas needs rapidly deployable solutions now. That’s where demand-side management comes in. This strategy enables grid operators to keep the lights on by lowering peak demand rather than burning more fossil fuels to meet it or, worse, shutting everything off.

Demand response, a demand-side management program, is vital in balancing the grid by lowering electricity demand through load control devices to ensure grid stability. Programs typically involve residential energy consumers volunteering to let the grid operator reduce their energy consumption at a planned time or when the grid is under peak load, typically in exchange for a credit on their energy bill. ERCOT, for example, implements demand response and rate structure programs to reduce strain on the grid and plans to increase these strategies in the future, especially during the months when extreme weather events are more likely and demand is highest.

The primary solution for meeting peak demand and preventing blackouts is for the utility to turn on expensive, highly polluting, gas-powered “peaker” plants. Unfortunately, there’s a push to add more of these plants to the grid in anticipation of increasing demand. Instead of desperately burning fossil fuels, we should get more out of our existing infrastructure through demand-side management.

Optimizing existing infrastructure

The effectiveness of demand response programs depends in part on energy customers' participation. Despite the financial incentive, customers may be reluctant to participate because they don’t want to relinquish control over their AC. Grid operators also need timely energy usage data from responsive load control technology to plan and react to demand fluctuations. Traditional load control switches don’t provide these benefits.

However, intelligent residential load management technology like smart panels can modernize demand response programs and maximize their effectiveness with real-time data and unprecedented responsiveness. They can encourage customer participation with a less intrusive approach – unlocking the ability for the customer to choose from multiple appliances to enroll. They can also provide notifications for upcoming demand response events, allowing the customer to plan for the event or even opt-out by appliance. In addition to their demand response benefits, smart panels empower homeowners to optimize their home energy and unlock extended runtime for home batteries during a blackout.

Utilities and government should also encourage the adoption of distributed energy resources like rooftop solar and home batteries. These resources can be combined with residential load management technology to drastically increase the effectiveness of demand response programs, granting utilities more grid-stabilizing resources to prevent blackouts.

Solar and storage play a key role

During the ten demand records in the summer of 2023, batteries discharging in the evening helped avoid blackouts, while solar and wind generation covered more than a third of ERCOT's daytime load demand, preventing power price spikes.

Rooftop solar panels generate electricity that can be stored in battery backup systems, providing reliable energy during outages or peak demand. Smart panels extend the runtime of these batteries through automated energy optimization, ensuring critical loads are prioritized and managed efficiently.

Load management technology, like smart panels, enhances the effectiveness of DERs. In rolling blackouts, homeowners with battery storage can rely on smart panels to manage energy use, keeping essential appliances operational and extending stored energy usability. Smart panels allow utilities to effectively manage peak demand, enabling load flexibility and preventing grid overburdening. These technologies and an effective demand response strategy can help Texans optimize the existing energy capacity and infrastructure.

A more resilient energy future

Texas can turn its energy challenges into opportunities by embracing advanced energy management technologies and robust demand-side strategies. Smart panels and distributed energy resources like solar and battery storage offer a promising path to a resilient and efficient grid. As Texans navigate increasing electricity demands and extreme weather events, these innovations provide hope for a future where reliable energy is accessible to all, ensuring grid stability and enhancing the quality of life across the state.

———

Kelly Warner is the CEO of Lumin, a responsive energy management solutions company.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.