Soon, the country will have IONNA's "Rechargery" locations thanks to the support of Texas-based Toyota and other automakers. Rendering courtesy of IONNA

A charging network founded by eight of the world’s top automakers have announced that they have broken ground on their first electric vehicle charging station.

IONNA will work to transform a historic district gas station into a new "Rechargery" in North Carolina. The initiative is backed by Plano-based Toyota, along with BMW, General Motors, Honda, Hyundai, Mercedes-Benz, Kia, and Stellantis.

With plans to open locations across the country, the station will provide 10 covered parking bays and will be accessible to both CCS and NAC chargers. The charging ports will be capable of up to 400 kilowatts and 800+ Volts. The site will also include an indoor driver’s lounge, coffee service, food/beverage, restrooms, and WIFI.

“We are excited to announce our support of IONNA to deploy DC fast chargers throughout the U.S. and Canada,” Ted Ogawa, president and CEO of Toyota Motor North America, says in a news release. “We believe this will not only promote the adoption of BEVs and increase customer confidence in the technology, but it will provide our Toyota and Lexus customers with access to IONNA’s rapidly growing charging network in North America.”

IONNA will “enable urban and long-distance EV mobility for all with over 30,000 ultra-fast-and-reliable charging points by 2030” according to the company.

IONNA also announced Jackie Slope as the Chief Technology Officer. Slope previously worked with customer experiences at Crypto.com Arena and Madison Square Garden.

“Having spent my career raising the bar around the customer experience I am excited to find ways to innovate and elevate the charging experience by serving the customer above all else in this new and exciting industry,” Slope said in a news release.

While the North Carolina location is the first of its kind, IONNA plans to expand its Rechargery stations around North America soon.

In other EV news, Hyundai Motor and Kia launched a project on Sept. 25 to develop lithium iron phosphate (LFP) battery cathode material. Hyundai Steel and cathode material market leader EcoPro BM will aim to synthesize materials directly without creating a precursor for LFP battery cathode material production

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

freshly granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Global industrial company Daikin makes deal with Houston Astros on stadium rename

big deal

The Houston Astros' home will get a new name on Jan. 1, becoming Daikin Park under an agreement through the 2039 season the team announced Monday.

The stadium opened as Enron Field in 2000 as part of a 30-year, $100 million agreement but the name was removed in March 2002 following Enron Corp.'s bankruptcy filing and the ballpark briefly became Astros Field.

It was renamed Minute Maid Park in June 2002 as part of a deal with The Minute Maid Co., a Houston-based subsidiary of The Coca-Cola Co. Then-Astros owner Drayton McLane said at the time the agreement was for 28 years and for more than $100 million.

The new deal is with Daikin Comfort Technologies North America Inc., a subsidiary of Daikin Industries Ltd., which is based in Japan and is a leading air conditioning company.

Minute Maid will remain an Astros partner through 2029, the team said.

In August, Daikin, which has its 4.2 million-square-foot Daikin Texas Technology Park in Waller, Texas, partnered with the city of Houston to provide advanced air conditioning and heating solutions to help homeowners with energy efficiency and general comfort. The company pledged install up to 30 horizontal discharge inverter FIT heat pump units over the next three years.

3 things you may have missed: Houston climatetech startup closes seed, events to attend, and more

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Events not to miss

Put these Houston-area energy-related events on your calendar.

Big raise: Helix Earth secures $5.6M seed led by local investor

Helix Earth's technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators. Photo by Sergei A/Pexels

A Houston startup with clean tech originating out of NASA has secured millions in funding.

Helix Earth Technologies closed an oversubscribed $5.6 million seed funding led by Houston-based research and investment firm Veriten. Anthropocene Ventures, Semilla Capital, and others including individual investors also participated in the round.

“This investment will empower the Helix Earth team to accelerate the development and deployment of our first groundbreaking hardware technology designed to disrupt a significant portion of the commercial air conditioning market, an industry that is ready for innovation,” Rawand Rasheed, Helix Earth co-founder and CEO, says in a news release. Continue reading.

Podcast: Sujatha Kumar of Dsider on helping startups bridge the critical gap between vision and execution

Through Dsider’s techno-economic analysis platform, Sujatha Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence. Photo via LinkedIn

What if the future of clean energy wasn’t just about invention, but execution? For Sujatha Kumar, CEO of Dsider, success in clean tech hinges on more than groundbreaking technology—it’s about empowering founders with the tools to make their innovations viable, scalable, and economically sound.

Through Dsider’s techno-economic analysis (TEA) platform, Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence.

In a recent episode of the Energy Tech Startups Podcast, Kumar shared her insights on the growing importance of TEA in the hard tech space. While clean energy innovation promises transformative solutions, the challenge lies in proving both technical feasibility and economic sustainability. Kumar argues that many early-stage founders, especially in fields like carbon capture, microgrids, and renewable energy, lack the necessary financial tools to assess market fit and long-term profitability—a gap Dsider aims to fill. Read more and listen to the episode.