A major heat alert is in place for Texas. Photo via Getty Images

Although the first official day of summer is not until June 20, Houstonians are already feeling the heat with record-breaking, triple-digit temperatures. The recent heatwave has many Texans wondering if the state’s grid will have enough power to meet peak demand during the summer.

How the Texas grid fared in summer 2024

To predict what could happen as we enter summer this year, it is essential to assess the state of the grid during summer 2024, and what, if anything, has been improved.

According to research from the Federal Reserve Bank of Dallas, solar electricity generation and utility-scale batteries within the ERCOT power grid set records in summer 2024. On average, solar contributed nearly 25 percent of total power needs during mid-day hours between June 1 and August 31. In critical evening hours, when load (demand for electricity) remains elevated but solar output declines, discharge from batteries successfully filled the gap.

Texas added more battery storage capacity than any other state last year, and, excluding California, now has more battery capacity than the rest of the country combined. The state also added 3,410 megawatts of natural gas-fueled power last year. While we did experience major power losses as a result of extreme weather, such as the derecho in May and Hurricane Beryl in July, ERCOT did not have to issue a single conservation appeal last summer to ward off capacity-related outages--and it was the sixth-hottest summer on record.

Policymakers are also taking steps to pass legislation that will help stabilize the grid. During this year’s 89th legislative session, Senate Bill 6 (TX SB6) was introduced, which seeks to:

  • Improve ERCOT's load forecasting transparency
  • Enhance outage protections for residential consumers
  • Adjust transmission cost allocations
  • Bolster grid reliability

In essence, the bill is meant to balance business growth with grid reliability, ensuring that the state continues to be an attractive destination for industrial expansion while preventing reliability risks due to rapid demand increases.

Is the Texas grid prepared for summer 2025?

The good news is that the grid is predicted to be able to manage the energy demand this summer, but there is no guarantee that power disruptions will not happen.

The National Oceanic and Atmospheric Administration has indicated that summer 2025 will likely be warmer and drier than average across most of Texas. Based on ERCOT data and weather projections, West Texas and the Dallas-Fort Worth and Houston metropolitan areas face the highest risk of outages.

While Texas is No. 1 in wind power and No. 2 in solar power, only behind California, there are valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries. Although solar and wind capacity continues to expand rapidly, integration challenges remain during peak demand periods, especially during the late afternoon when solar generation declines but air conditioning usage remains high.

Additional factors that contribute to the grid’s instability are that Texas faces a massive surge in demand for electricity due to an increase in large users like crypto mining facilities and data centers, as well as population growth. ERCOT predicts that Texas’ energy demand will nearly double by 2030, with power supply projected to fall short of peak demand in a worst-case scenario beginning in summer 2026.

Thanks to investments in solar power, battery storage, and traditional energy sources, ERCOT has made progress in improving grid reliability which indicates that, at least for this summer, energy load will be manageable. A combination of legislative action, strategic planning and technological innovation will need to continue to ensure that this momentum remains on a positive trajectory.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Texans are facing extreme weather at every turn — can the grid withstand these events? Photo via heimdallpower.com

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

How has the Texas grid improved since Winter Storm Uri in 2021? Getty Images

Being prepared: Has the Texas grid been adequately winterized?

Winter in Texas

Houstonians may feel anxious as the city and state brace for additional freezing temperatures this winter. Every year since 2021’s Winter Storm Uri, Texans wonder whether the grid will keep them safe in the face of another winter weather event. The record-breaking cold temperatures of Uri exposed a crucial vulnerability in the state’s power and water infrastructure.

According to ERCOT’s 6-day supply and demand forecast from January 3, 2025, it expected plenty of generation capacity to meet the needs of Texans during the most recent period of colder weather. So why did the grid fail so spectacularly in 2021?

  1. Demand for electricity surged as millions of people tried to heat their homes.
  2. ERCOT was simply not prepared despite previous winter storms of similar intensity to offer lessons in similarities.
  3. The state was highly dependent on un-winterized natural gas power plants for electricity.
  4. The Texas grid is isolated from other states.
  5. Failures of communication and coordination between ERCOT, state officials, utility companies, gas suppliers, electricity providers, and power plants contributed to the devastating outages.

The domino effect resulted in power outages for millions of Texans, the deaths of hundreds of Texans, billions of dollars in damages, with some households going nearly a week without heat, power, and water. This catastrophe highlighted the need for swift and sweeping upgrades and protections against future extreme weather events.

Texas State Legislature Responds

Texas lawmakers proactively introduced and passed legislation aimed at upgrading the state’s power infrastructure and preventing repeated failures within weeks of the storm. Senate Bill 3 (SB3) measures included:

  • Requirements to weatherize gas supply chain and pipeline facilities that sell electric energy within ERCOT.
  • The ability to impose penalties of up to $1 million for violation of these requirements.
  • Requirement for ERCOT to procure new power sources to ensure grid reliability during extreme heat and extreme cold.
  • Designation of specific natural gas facilities that are critical for power delivery during energy emergencies.
  • Development of an alert system that is to be activated when supply may not be able to meet demand.
  • Requirement for the Public Utility Commission of Texas, or PUCT, to establish an emergency wholesale electricity pricing program.

Texas Weatherization by Natural Gas Plants

In a Railroad Commission of Texas document published May 2024 and geared to gas supply chain and pipeline facilities, dozens of solutions were outlined with weatherization best practices and approaches in an effort to prevent another climate-affected crisis from severe winter weather.

Some solutions included:

  • Installation of insulation on critical components of a facility.
  • Construction of permanent or temporary windbreaks, housing, or barriers around critical equipment to reduce the impact of windchill.
  • Guidelines for the removal of ice and snow from critical equipment.
  • Instructions for the use of temporary heat systems on localized freezing problems like heating blankets, catalytic heaters, or fuel line heaters.

According to Daniel Cohan, professor of environmental engineering at Rice University, power plants across Texas have installed hundreds of millions of dollars worth of weatherization upgrades to their facilities. In ERCOT’s January 2022 winterization report, it stated that 321 out of 324 electricity generation units and transmission facilities fully passed the new regulations.

Is the Texas Grid Adequately Winterized?

Utilities, power generators, ERCOT, and the PUCT have all made changes to their operations and facilities since 2021 to be better prepared for extreme winter weather. Are these changes enough? Has the Texas grid officially been winterized?

This season, as winter weather tests Texans, residents may potentially experience localized outages. When tree branches cannot support the weight of the ice, they can snap and knock out power lines to neighborhoods across the state. In the instance of a downed power line, we must rely on regional utilities to act quickly to restore power.

The specific legislation enacted by the Texas state government in response to the 2021 disaster addressed to the relevant parties ensures that they have done their part to winterize the Texas grid.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article first appeared on our sister site, InnovationMap.com.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."