The CERAWeek by S&P Global 2025 programming will focus on energy policy and the reshaping energy landscape. Photo courtesy of CERAWeek

CERAWeek by S&P Global will bring together energy leaders from around the world for its 43rd annual conference next week, March 10–14, at the Hilton Americas Houston.

U.S. Secretary of Energy Chris Wright and U.S. Secretary of the Interior Doug Burgum will headline the conference with plenary addresses focused on strengthening global energy security.

Wright’s company, Liberty Energy, is also an investor in Houston-based geothermal company Fervo Energy. Burgum also chairs the newly formed White House National Energy Dominance Council and was previously the governor of North Dakota.

"We are very pleased to welcome Secretary Wright to CERAWeek as he leads the Department of Energy and guides U.S. energy policy with the tremendous array of responsibilities that affect American national and energy security," Daniel Yergin, conference chair and Vice Chairman of S&P Global said in a news release. "His insights on the future of U.S. energy policy will be an important and timely contribution to critical dialogues at this year's conference about the technological, market and geopolitical factors that are shaping the global energy landscape."

Yergin added in a separate release: "As the cabinet secretary responsible for federal lands and resources and chairman of the National Energy Dominance Council, (Burgum’s) views on U.S. energy policy and security have tremendous impact. Moreover, he brings in-depth experience of having been governor of a major energy-producing state. His participation will be a timely and important addition to the critical dialogues taking place at this year's conference."

This year, CERAWeek will zero in on the theme “Moving Ahead: Energy strategies for a complex world,” and will consider how changes in policy, technology and geopolitics are reshaping the energy landscape.

Some of the speakers include:

  • Mike Wirth, chairman and CEO of Chevron Corp.
  • Laurence D. Fink, founder, chairman and CEO of BlackRock
  • Murray Auchincloss, CEO of bp plc
  • Vicki Hollub, president and CEO of Oxy
  • Ryan Lance, chairman and CEO of ConocoPhillips
  • Wael Sawan, CEO of Shell
  • Lorenzo Simonelli, chairman and CEO of Baker Hughes
  • John Hess, CEO of Hess Corporation
  • Scott Kirby, CEO of United Airlines
  • And many others

CERAWeek's key themes this year tackle power, grid and electrification, renewables and low-carbon fuels, the capital transition, innovation technology, climate and sustainability and others topics.

The CERAWeek Innovation Agora track, which is the program's deeper dive into technology and innovation will feature thought leadership "transformational technology platforms in energy and adjacent industries ranging across AI, decarbonization, low carbon fuels, cybersecurity, hydrogen, nuclear, mining and minerals, mobility, automation, and more," according to the release.

The "Agora Hubs" will return and will focus on climate, carbon and new energies.

The 2024 CERAWeek addressed topics like funding the energy transition, geothermal energy, AI and more. Registration for 2025 is available now.

By prioritizing the deployment of smart, energy-efficient technologies, we can ensure that Houston remains at the forefront of the global energy landscape, setting the standard for other cities to follow. Photo via Getty Images

HVAC innovation has a huge role to play in Houston amid energy transition

Guest column

As Houston, the energy capital of the world, navigates the global energy transition, the city is uniquely positioned to lead by example. This transition isn’t just about shifting from fossil fuels to renewable energy; it’s about creating an ecosystem where corporations, research institutions, startups, and investors collaborate to develop and implement innovative technologies.

One of the most promising areas for reducing energy consumption and minimizing environmental impact is in heating, ventilation, and air conditioning, or HVAC, systems.

Houston’s intense weather patterns demand efficient and adaptable climate control solutions. Traditional HVAC systems, while effective in maintaining indoor comfort, often operate on fixed settings that don’t account for real-time changes in occupancy or weather. This results in energy waste and increased utility costs — issues that can be mitigated by integrating artificial intelligence into HVAC systems.

AI-driven HVAC systems offer a dynamic approach to heating and cooling, learning from user preferences and environmental conditions to optimize performance. These systems use advanced algorithms to continuously adjust their operation, ensuring that energy is used only when and where it’s needed. This results in up to 30 percent greater energy efficiency compared to conventional systems, translating into significant savings for consumers and a reduction in overall energy demand.

For a city like Houston, where energy consumption is a critical concern, the widespread adoption of AI-integrated HVAC systems could have a substantial impact. By optimizing energy use in homes, offices, and industrial spaces, these systems help reduce the strain on the electrical grid, particularly during peak usage times. Additionally, they contribute to lowering greenhouse gas emissions, aligning with Houston’s broader sustainability goals.

The potential of AI in HVAC systems extends beyond efficiency and environmental benefits. These systems enhance the user experience by offering precise control over indoor climates, adapting to individual preferences, and responding to external conditions in real-time. This level of customization not only improves comfort but also supports a smarter, more sustainable approach to energy management.

Houston’s energy transition requires the collective efforts of all sectors. While large corporations and government entities play a significant role, the contributions of startups, research institutions, and energy service companies are equally important. These entities are at the forefront of developing technologies that address both the economic and environmental challenges of our time. Investors are increasingly recognizing the value of funding solutions that offer long-term sustainability alongside financial returns, further driving the adoption of innovative energy technologies.

The integration of AI into HVAC systems represents a crucial step forward in this journey. As Houston continues to evolve as a leader in energy innovation, embracing advanced technologies like AI-driven HVAC systems will be key to achieving a more sustainable and resilient energy future. These systems are not just a technological advancement—they are a strategic tool in the broader effort to reduce energy consumption, lower emissions, and create a healthier environment for all.

At the heart of Houston’s energy transition is the commitment to building a future that balances growth with sustainability. By prioritizing the deployment of smart, energy-efficient technologies, we can ensure that Houston remains at the forefront of the global energy landscape, setting the standard for other cities to follow. As we move forward, the integration of AI into our energy infrastructure, particularly in HVAC systems, will be instrumental in shaping a sustainable and prosperous future for Houston and beyond.

———

Trevor Schick is the president of KOVA, a Texas company creating sustainable solutions in building development.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report ranks Texas in the middle for sustainable development

room to improve

Texas appears in the middle of the pack in a new ranking of the best states for sustainable development.

SmileHub, a nonprofit that rates charities, examined 20 key metrics to create its list of the best states for sustainable development. Among the metrics it studied were the share of urban tree cover, green buildings per capita and clean energy jobs per capita. Once SmileHub crunched all the numbers, it put Texas in 24th place — one notch above average.

The United Nations defines sustainable development as “meeting present needs without compromising the chances of future generations to meet their needs.”

Here’s how Texas fared in several of SmileHub’s ranking categories:

  • No. 2 for water efficiency and sustainability
  • No. 7 for presence of wastewater reuse initiatives
  • No. 18 for environmental protection charities per capita
  • No. 25 for green buildings per capita
  • No. 34 for clean energy jobs per capita
  • No. 34 for industrial toxins per square mile
  • No. 38 for share of tree cover in urban areas

California leads the SmileHub list, followed by Vermont, Massachusetts, Oregon and Maryland.

When it comes to water, a 2024 report commissioned by Texas 2036, a nonpartisan think tank, recommends that Texas invest $154 billion over the next 50 years in new water supply and infrastructure to support sustainable growth, according to the Greater Houston Partnership.

“The report underscores a stark reality: a comprehensive, sustainable funding strategy for water is necessary to keep Texas economically resilient and competitive,” the partnership says.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.