Houston-based Citroniq Chemicals has secured its series A funding. Photo via Getty Images

A fresh $12 million round of funding will enable Houston-based Citroniq Chemicals to propel planning, design, and construction of its first decarbonization plant.

An unidentified multinational energy technology company led the series A round, with participation from Houston-based Lummus Technology Ventures and cooperation from the State of Nebraska. The Citroniq plant, which will produce green polypropylene, will be located in Nebraska.

“Lummus’ latest investment in Citroniq builds on this progress and strengthens our partnership, working together to lower carbon emissions in the plastics industry,” Leon de Bruyn, president and CEO of Lummus Technology, says in a news release.

Citroniq is putting together a decarbonization platform designed to annually capture 2 million metric tons of greenhouse gas emissions at each plant. The company plans to invest more than $5 billion into its green polypropylene plants. Polypropylene is a thermoplastic resin commonly used for injection molding.

The series A round “is just the first step in our journey towards building multiple biomanufacturing hubs, boosting the Nebraska bioeconomy by converting local ethanol into valuable bioplastics,” says Kelly Knopp, co-founder and CEO of Citroniq.

Citroniq’s platform for the chemical and plastics industries uses technology and U.S.-produced ethanol to enable low-cost carbon capture. Citroniq’s process permanently sequesters carbon into a useful plastic pellet.

Lummus Technology licenses process technologies for clean fuels, renewables, petrochemicals, polymers, gas processing and supply lifecycle services, catalysts, proprietary equipment, and digital transformation.

———

This article originally ran on InnovationMap.

Lummus and Citroniq say their first plant, set for completion in 2027, will produce 400,000 metric tons of green polypropylene each year. Photo via lummustechnology.com

Houston companies partner on sustainable plastics alternative

green polypropylene

Two Houston companies, Lummus Technology and Citroniq Chemicals, have paired up to build North American plants that produce green polypropylene.

Polypropylene is a thermoplastic used to manufacture items such as plastic packaging, plastic parts, medical supplies, textiles, and fibers. Green polypropylene is made from biomass.

Lummus and Citroniq say their first plant, set for completion in 2027, will produce 400,000 metric tons of green polypropylene each year. The plant will be at an undisclosed location in the Midwest.

In April, Lummus and Citroniq signed a letter of intent to develop Citroniq green polypropylene projects in North America using Lummus’ Verdenesuite of polypropylene technology. Their newly announced licensing and engineering agreements apply to the first of four planned facilities.

“This agreement demonstrates the progress we continue to make with Citroniq in establishing the first world-scale sustainable bio-polypropylene production process in North America,” Romain Lemoine, chief business officer for polymers and petrochemicals at Lummus, says in a news release.

“Combining Lummus’ leadership in polypropylene licensing with Citroniq’s carbon-negative production capabilities will help us meet the growing demand for bio-polypropylene and accelerate the decarbonization of the downstream energy industry,” Lemoine adds.

Citroniq says it’s investing more than $5 billion to expand its E2O process. The process produces carbon-negative plastics and hydrogen-and-carbon compounds called olefins from fully sustainable feedstocks. This eliminates the use of convention fossil-fuel hydrocarbons, Citroniq says.

Mel Badheka, principal and co-founder of Citroniq, says his company aims “to meet the market’s growing need for sustainable carbon-negative polypropylene at a competitive price.”

The global market for green polypropylene was valued at $123.5 billion in 2022, according to Grand View Research. Growth in the sector is being driven in part by the construction industry, the firm says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston maritime startup raises $43M to electrify cargo vessels

A Houston-based maritime technology company that is working to reduce emissions in the cargo and shipping industry has raised VC funding and opened a new Houston headquarters.

Fleetzero announced that it closed a $43 million Series A financing round this month led by Obvious Ventures with participation from Maersk Growth, Breakthrough Energy Ventures, 8090 Industries, Y Combinator, Shorewind, Benson Capital and others. The funding will go toward expanding manufacturing of its Leviathan hybrid and electric marine propulsion system, according to a news release.

The technology is optimized for high-energy and zero-emission operation of large vessels. It uses EV technology but is built for maritime environments and can be used on new or existing ships with hybrid or all-electric functions, according to Fleetzero's website. The propulsion system was retrofitted and tested on Fleetzero’s test ship, the Pacific Joule, and has been deployed globally on commercial vessels.

Fleetzero is also developing unmanned cargo vessel technology.

"Fleetzero is making robotic ships a reality today. The team is moving us from dirty, dangerous, and expensive to clean, safe, and cost-effective. It's like watching the future today," Andrew Beebe, managing director at Obvious Ventures, said in the news release. "We backed the team because they are mariners and engineers, know the industry deeply, and are scaling with real ships and customers, not just renderings."

Fleetzero also announced that it has opened a new manufacturing and research and development facility, which will serve as the company's new headquarters. The facility features a marine robotics and autonomy lab, a marine propulsion R&D center and a production line with a capacity of 300 megawatt-hours per year. The company reports that it plans to increase production to three gigawatt-hours per year over the next five years.

"Houston has the people who know how to build and operate big hardware–ships, rigs, refineries and power systems," Mike Carter, co-founder and COO of Fleetzero, added in the release. "We're pairing that industrial DNA with modern batteries, autonomy, and software to bring back shipbuilding to the U.S."