The facility in Baytown is expected to produce 28.3 million cubic meters of low-carbon hydrogen daily. Photo via exxonmobil.com

ExxonMobil selected Australia-based engineering and professional services company Worley to provide engineering, procurement and construction services for a proposed hydrogen and ammonia production facility in Baytown, which is expected to have a production capacity of 1 billion cubic feet of blue hydrogen per day. ExxonMobil expects the facility will be the largest of its kind in the world.

“We are delighted to continue our strategic, global relationship with ExxonMobil in its execution of upcoming projects, particularly in delivering this EPC project on the US Gulf Coast, which contributes significantly to strengthening Worley’s backlog,” Chris Ashton, CEO of Worley, states, according to Offshore Energy.

The facility in Baytown is expected to produce 28.3 million cubic meters (1 billion cubic feet) of low-carbon hydrogen daily and nearly 1 million metric tonnes (more than 1 million tons) of ammonia per year, which will also capture more than 98 percent of the associated CO2 emissions.

The facility will leverage advanced carbon capture and storage technologies to reduce emissions associated with hydrogen production. ExxonMobile also said its carbon capture and storage system would be available for use by third-party CO2 emitters in the area.

A final investment decision is expected in 2025 , and an anticipated startup in 2029. “Blue” hydrogen is expected to be a top energy driver in 2025 according to global consultancy Wood Mackenzie who predicts that at least three large-scale blue hydrogen projects in the U.S will reach FID by next year.

The company hopes the new facility will help in creating U.S. jobs and supporting community development initiatives throughout the Houston area, and the state.

Houston global engineering firm McDermott will design a Louisiana project to produce millions of tons of clean ammonia. Image via cleanhydrogenworks.com

Houston group secures contract for major clean ammonia project in Louisiana

locked in

Houston-headquartered McDermott has received a new contract on a Louisiana clean ammonia project.

Clean energy development company Clean Hydrogen Works tapped McDermott for the front-end engineering and design contract for the Ascension Clean Energy Project. ACE — located in Ascension Parish, Louisiana — is jointly developed by CHW with strategic shareholders ExxonMobil, Mitsui O.S.K. Lines, and Hafnia and is expected to initially produce 2.4 million metric tons per annum of clean ammonia and expand to total 7.2 million metric tons per annum production down the road.

“We are thrilled to partner with McDermott, a company renowned for its extensive experience in mega module construction, demonstrated by a remarkable track record of on-time, on-budget execution of major energy and chemicals projects," Johnny Cook, CHW senior vice president of engineering, procurement, and construction, says in a news release. "This collaboration further strengthens key competitive advantages of our project, including being a mega module capable site with ready infrastructure access to gas, shipping and CCS, an unmatched shareholder base with expertise in CCS and maritime transport, and an experienced team with demonstrated success in executing mega module projects.”

The project has carbon capture and sequestration contracts with ExxonMobil and expects regulatory approvals by early 2025. ACE is expected to reach its final investment decision by late 2025 and start production in 2029. McDermott’s Houston office will lead the project with support from its Gurugram, India, office.

“This FEED award is testament to McDermott’s industry-leading mega-module delivery and installation expertise, and the breadth of our capabilities across the energy transition,” Rob Shaul, McDermott’s senior vice president of Low Carbon Solutions, adds. “Our integrated delivery model, with self-perform construction capabilities and portfolio of McDermott-owned, globally diversified, module fabrication yards means we can offer CHW a repeatable modular implementation solution that is expected to maximize value, reduce risk and provide quality assurance.”

Earlier this year, Houston-based Element Fuels completed the pre-construction phase of its hydrogen-powered clean fuels refinery and combined-cycle power plant in the Port of Brownsville — a project that McDermott is also providing FEED services for.

Also recently, McDermott secured an agreement to work on Canada's first commercial green hydrogen and ammonia production facility.

The University of Houston's new hydrogen program selected an Houston executive's team as the top project of the course. Photo via Getty Images

Houston energy leader wins hydrogen program's competition

top project

An executive from Houston-based SCS Technologies is celebrating a win from his time at the University of Houston Hydrogen Economy Program.

Cody Johnson, CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units, was on the winning 2024 Spring Capstone Project team for the UH program with the project, "Business Roadmap for Utilizing Hydrogen in Houston." The presentation outlined possible profits of $1.8 billion over the contract life with $180 million in green H2 investments.

The winning capstone project demonstrated the implementation of decarbonization processes. It included the enhancement of “capacity utilization in existing industrial hydrogen production along the Houston Ship Channel through amine capture technology,” according to a news release.

The team also identified business opportunities in producing ammonia as a liquid carrier by using the Haber-Bosch process that would leverage maritime ammonia tanker fleets to ship to Western Europe and Northeast Asia markets.

"It was an honor to collaborate with my Hydrogen Economy Program teammates to explore business opportunities using existing technologies to produce clean hydrogen and reinvest profits to further advance decarbonization efforts in the future," Johnson says in a news release. "I extend my gratitude to the University of Houston for assembling top-notch resources on the critical topic of clean hydrogen production. By bringing together students, corporate leaders, engineers, and scientists, we are able to join forces to accelerate the renewable hydrogen economy."

Cody Johnson is the CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units. Photo courtesy of SCS

UH’s Hydrogen Economy Program helps energy professionals and students strategically at the world’s energy hub in the Houston area. The program provides a forum for information from faculty and industry leaders. Participants in the University of Houston Hydrogen Economy Program can develop a capstone project by using knowledge from the completed course and then present a business plan for a clean hydrogen start-up venture. The projects were evaluated by a panel of judges after class presentations.

"At the University of Houston, we are committed to advancing the energy transition by bringing diverse skills and knowledge together," Alan Rossiter, executive director of external relations and educational program development for UH Energy, says in a news release. "The Hydrogen Economy Program is one of the many ways we achieve this. With the new cohort beginning in August and registration now open, we look forward to working with a new group of passionate, curious, and intelligent energy professionals and students."

The Hydrogen Economy is a part of UH Energy's Sustainable Energy Development portfolio. The Hydrogen Economy Program is a joint effort by UH and the American Institute of Chemical Engineers.

Led by Haotian Wang (left) and Feng-Yang Chen, the Rice University team published a study this month detailing how its reactor system sustainably converts waste into ammonia. Photo by Jeff Fitlow/Rice University

Houston lab develops reactor that sustainably turns waste into ammonia

seeing green

A team of Rice University engineers has developed a reactor design that can decarbonize ammonia production, produce clean water and potentially have applications in further research into other eco-friendly chemical processes.

Led by Rice associate professor Haotian Wang, the team published a study this month in the journal Nature Catalysis that details how the new reactor system sustainably and efficiently converts nitrates (common pollutants found in industrial wastewater and agricultural runoff) into ammonia, according to the university. The research was supported by Rice and the National Science Foundation.

“Our findings suggest a new, greener method of addressing both water pollution and ammonia production, which could influence how industries and communities handle these challenges,” Wang says in a statement. “If we want to decarbonize the grid and reach net-zero goals by 2050, there is an urgent need to develop alternative ways to produce ammonia sustainably.”

Other methods of creating ammonia include the Haber-Bosh process and electrochemical synthesis. The Haber-Bosh process requires large-scale centralized infrastructure and high temperature and pressure conditions. Meanwhile, electrochemical synthesis requires a high concentration of additive chemicals.

According to Rice, the new reactor requires less additive chemicals than the electrochemical synthesis, allowing nitrates to be converted more sustainably. The reactor relies on an innovative porous solid electrolyte as well as recyclable ions and a three-chamber system to improve the reaction’s efficiency.

Additionally, this development provides an effective water decontamination method.

“We conducted experiments where we flowed nitrate-contaminated water through this reactor and measured the amount of ammonia produced and the purity of the treated water,” Feng-Yang Chen, a Rice graduate student who is the lead author on the study, says. “We discovered that our novel reactor system could turn nitrate-contaminated water into pure ammonia and clean water very efficiently, without the need for extra chemicals. In simple terms, you put wastewater in, and you get pure ammonia and purified water out.”

Pedro Alvarez, the George R. Brown Professor of Civil and Environmental Engineering, director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) and the Water Technologies Entrepreneurship and Research (WaTER) Institute at Rice, says the reactor is "very timely and important" for growing cities that must deal with nitrate-contaminated groundwater supplies it.

"Conventional nitrate removal in drinking water treatment involves ion exchange or membrane filtration by reverse osmosis, which generates brines and transfers the nitrate problem from one phase to another,” he continues.

Wang's lab has been making headlines in recent years for innovative processes and technologies focused on the energy transition.

Last year, the lab published a study in Nature detailing a new technology that uses electricity to remove carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction, generating between 10 to 25 liters of high-purity carbon using only the power of a standard lightbulb.

In 2022, Rice reported that Wang’s lab in the George R. Brown School of Engineering had also replaced rare, expensive iridium with ruthenium, a more abundant precious metal, as the positive-electrode catalyst in a reactor that splits water into hydrogen and oxygen.

The lab received a portion of $10.8 million in research grants from the Houston-based Welch Foundation for research focused on converting carbon dioxide into useful chemicals, such as ethanol, last year. And Solidec, founded by Ryan Duchanois and Yang Xia from Wang's Lab, also received a $100,000 award from Rice as part of the One Small Step Grant program.

Wang has also been named among one of the most-cited researchers in the world.
The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Photo via exxonmobil.com

ExxonMobil’s low-carbon hydrogen project in Baytown adds Air Liquide as partner

team work

Spring-based energy giant ExxonMobil has enlisted Air Liquide as a partner for what’s being billed as the world’s largest low-carbon hydrogen project.

The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Furthermore, Air Liquide will build and operate four units to supply 9,000 metric tons of oxygen and up to 6,500 metric tons of nitrogen each day for the ExxonMobil project.

Air Liquide’s U.S. headquarters is in Houston.

ExxonMobil’s hydrogen production facility is planned for the company’s 3,400-acre Baytown refining and petrochemical complex. The project is expected to produce 1 billion cubic feet of low-carbon hydrogen daily from natural gas and more than 1 million tons of low-carbon ammonia annually while capturing more than 98 percent of the associated carbon emissions.

“Momentum continues to build for the world’s largest low-carbon hydrogen project and the emerging hydrogen market,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The hydrogen project is expected to come online in 2027 or 2028.

ExxonMobil says using hydrogen to fuel its olefins plant at Baytown could reduce sitewide carbon emissions by as much as 30 percent. Meanwhile, the carbon capture and storage (CSUS) component of the project would be capable of storing 10 million metric tons of carbon each year, the company says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ can't-miss Houston energy events to kick off the new year

WHERE TO BE

From networking meetups to global talks, 2025 is filled with opportunities for energy industry professionals in Houston. Here's a roundup of events you won't want to miss out on so mark your calendars and register accordingly.

Note: This post might be updated to add more events.


February 10-11— 6th American LNG Forum

Join LNG industry professionals, innovators and policymakers in Houston—one of the world’s leading energy hubs, to discover groundbreaking technologies that are driving the future of liquified natural gas. From market dynamics to decarbonization strategies, this is your chance to connect, learn and become part of the LNG revolution at American LNG Forum.

This event begins Monday, February 10, at the Westin Galleria Houston. Click here to register.

February 19-20— 7th Global Energy Forum 2025

The Global Energy Forum brings a bipartisan collective of U.S. Congressmen together with top energy executives to convene for off-the-record discussions in order to explore in-depth the energy strategies and solutions for a sustainable, clean, reliable and affordable energy future. Policymakers and executives from energy, finance, and technology will engage at the Global Energy Forum for a dialogue on energy infrastructure, technological innovation, policy and regulation reform needed to respond to the global energy crisis.

This event begins Wednesday, February 19, at 7:30 am at the Petroleum Club of Houston. Click here to register.

February 24-25 — AI In Energy

Join 150+ senior operations, digital, data and AI leaders in Houston for the industry's largest AI in Energy event, and unlock the potential of AI within your operations. Key points of discussion for 2025 include, how to: pair digital twins and gen AI, know when your critical assets need maintenance, move beyond pilot program to scale AI across the enterprise, leverage generative AI and data intelligence to unlock asset reliability.

This event begins Monday, February 24 at 7:30 am at Norris Conference Centers' City Centre. Click here to register.

February 25-27 — 2025 Energy HPC Conference

The 18th annual Energy High Performance Computing Conference, hosted annually at Rice University by the Ken Kennedy Institute, is the premier meeting place for the energy industry to engage in conversations about challenges and opportunities in high performance computing, computational science and engineering, machine learning, and data science. Attended by more than 500 leaders and experts from the energy industry, academia, national labs, and IT industry, this is a unique opportunity for key stakeholders to engage and network to help advance HPC in the energy industry.

This event begins Tuesday, February 25, at Rice University. Click here to register.

March 3-4 — Industrial Immersive

The Industrial Immersive community connects industrial, energy, engineering tech professionals making investment, strategy and tactical decisions, or building, scaling, and executing pioneering XR/ 3D/ simulations, digital twin, reality capture, edge/ spatial computing, AI/ ML, connected workforce & IIoT projects within their enterprise. This forum will bring together industry professionals to share first-hand experience, insight and advice for implementing and scaling immersive tech programs in enterprise operations.

This event begins Monday, March 3, at Westin Memorial City. Click here to register.

March 3-5 — Global Energy Meet 2025

The aim of this conference is to bring together all the key stakeholders interested in Fossil and Renewable Energy Sources to share and discuss advances and developments in these fields. It is a three-day event which features energy experts, academicians, business executives and engineers to showcase recent trends, strategies and challenges of energy systems. It creates a platform to focus on advancing new energy paradigms for energy systems and global energy issues.

This event begins Monday, March 3, at the Doubletree by Hilton. Click here to register.

March 4-6 — THRIVE Energy Conference

The Thrive Energy Conference by Daniel Energy Partners is for key energy professionals collaborating on research-driven insights and trends key to developing a pathway to a “thriving” energy future. This unique event combines leadership from public and private global energy companies as well as investors under a professional yet fun atmosphere.

This event begins Tuesday, March 4, at Minute Maid Park. Click here to register.

March 18-20 — The Connected Worker: Energy Summit

The Connected Worker: Energy Summit provides the opportunity for you to get hands-on with the essential solutions you need to empower your frontline workforce, hear real-word case studies from energy and utility leaders, and network with your industry peers. Learn how to: create a safer work environment, boost compliance and improve efficiencies through automation, make your data mobile and reduce rework, downtime and time to decision; improve workforce mobility and maximize the use of data to continuously enhance process and asset performance; and much more.

This event begins Tuesday, March 18, at 8:45 am at The Westin Galleria. Click here to register.

March 26 — Bots And Brews Spring 2025

Bots & Brews is the H-town robotics, drones, geospatial, data & AI meetup, hosted by the Energy Drone & Robotics Coalition and the co-hosts: Industrial Digital Twin Forum, Industrial Reality Capture Forum & Industrial AI Nexus: Automate, where leaders from energy/engineering asset owner/operators, service companies, tech solution providers, investors and everyone in the energy and industrial robotics/drone/data & AI community come together to catch up and talk about real-world solutions and deployments.

This event is Wednesday, March 26, from 5 to 7:45 pm at The Cannon West. Click here to register.

March 31-April 2 — World Hydrogen North America 2025

The U.S. Department of Energy announced the Hydrogen Energy Earthshot initiative to reduce the cost of clean hydrogen by 80% within a decade. Canada has also released its Hydrogen Strategy, which aims to make the country a global leader in hydrogen production, use, and exports. Seize the opportunity to connect with industry leaders from across the hydrogen value chain, fostering long-term business partnerships and exploring potential collaborations. Engage with prominent off-takers, both nationally and internationally, and gain first-hand insights into the latest projects shaping the future of hydrogen in the USA and Canada.

This event begins Monday, March 31, at the Marriott Marquis. Click here to register.

April 2-3 — Fugitive Emissions Summit Americas

Fugitive Emissions Summit Americas brings together a community of end users, EPCs, distributors, manufacturers, and suppliers dedicated to improving workplace practices, in efforts to reduce environmental damage caused by industrial emissions. The informative conference and exhibition that will help to address the ever-changing world of fugitive emissions regulations and control. There will be a strong emphasis on leak detection and repair, emission control, and testing technologies and safety as they pertain to current regulations.

This event begins Wednesday, April 2, at San Jacinto College. Click here to register.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

future of batteries

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”