The facility in Baytown is expected to produce 28.3 million cubic meters of low-carbon hydrogen daily. Photo via exxonmobil.com

ExxonMobil selected Australia-based engineering and professional services company Worley to provide engineering, procurement and construction services for a proposed hydrogen and ammonia production facility in Baytown, which is expected to have a production capacity of 1 billion cubic feet of blue hydrogen per day. ExxonMobil expects the facility will be the largest of its kind in the world.

“We are delighted to continue our strategic, global relationship with ExxonMobil in its execution of upcoming projects, particularly in delivering this EPC project on the US Gulf Coast, which contributes significantly to strengthening Worley’s backlog,” Chris Ashton, CEO of Worley, states, according to Offshore Energy.

The facility in Baytown is expected to produce 28.3 million cubic meters (1 billion cubic feet) of low-carbon hydrogen daily and nearly 1 million metric tonnes (more than 1 million tons) of ammonia per year, which will also capture more than 98 percent of the associated CO2 emissions.

The facility will leverage advanced carbon capture and storage technologies to reduce emissions associated with hydrogen production. ExxonMobile also said its carbon capture and storage system would be available for use by third-party CO2 emitters in the area.

A final investment decision is expected in 2025 , and an anticipated startup in 2029. “Blue” hydrogen is expected to be a top energy driver in 2025 according to global consultancy Wood Mackenzie who predicts that at least three large-scale blue hydrogen projects in the U.S will reach FID by next year.

The company hopes the new facility will help in creating U.S. jobs and supporting community development initiatives throughout the Houston area, and the state.

Houston global engineering firm McDermott will design a Louisiana project to produce millions of tons of clean ammonia. Image via cleanhydrogenworks.com

Houston group secures contract for major clean ammonia project in Louisiana

locked in

Houston-headquartered McDermott has received a new contract on a Louisiana clean ammonia project.

Clean energy development company Clean Hydrogen Works tapped McDermott for the front-end engineering and design contract for the Ascension Clean Energy Project. ACE — located in Ascension Parish, Louisiana — is jointly developed by CHW with strategic shareholders ExxonMobil, Mitsui O.S.K. Lines, and Hafnia and is expected to initially produce 2.4 million metric tons per annum of clean ammonia and expand to total 7.2 million metric tons per annum production down the road.

“We are thrilled to partner with McDermott, a company renowned for its extensive experience in mega module construction, demonstrated by a remarkable track record of on-time, on-budget execution of major energy and chemicals projects," Johnny Cook, CHW senior vice president of engineering, procurement, and construction, says in a news release. "This collaboration further strengthens key competitive advantages of our project, including being a mega module capable site with ready infrastructure access to gas, shipping and CCS, an unmatched shareholder base with expertise in CCS and maritime transport, and an experienced team with demonstrated success in executing mega module projects.”

The project has carbon capture and sequestration contracts with ExxonMobil and expects regulatory approvals by early 2025. ACE is expected to reach its final investment decision by late 2025 and start production in 2029. McDermott’s Houston office will lead the project with support from its Gurugram, India, office.

“This FEED award is testament to McDermott’s industry-leading mega-module delivery and installation expertise, and the breadth of our capabilities across the energy transition,” Rob Shaul, McDermott’s senior vice president of Low Carbon Solutions, adds. “Our integrated delivery model, with self-perform construction capabilities and portfolio of McDermott-owned, globally diversified, module fabrication yards means we can offer CHW a repeatable modular implementation solution that is expected to maximize value, reduce risk and provide quality assurance.”

Earlier this year, Houston-based Element Fuels completed the pre-construction phase of its hydrogen-powered clean fuels refinery and combined-cycle power plant in the Port of Brownsville — a project that McDermott is also providing FEED services for.

Also recently, McDermott secured an agreement to work on Canada's first commercial green hydrogen and ammonia production facility.

The University of Houston's new hydrogen program selected an Houston executive's team as the top project of the course. Photo via Getty Images

Houston energy leader wins hydrogen program's competition

top project

An executive from Houston-based SCS Technologies is celebrating a win from his time at the University of Houston Hydrogen Economy Program.

Cody Johnson, CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units, was on the winning 2024 Spring Capstone Project team for the UH program with the project, "Business Roadmap for Utilizing Hydrogen in Houston." The presentation outlined possible profits of $1.8 billion over the contract life with $180 million in green H2 investments.

The winning capstone project demonstrated the implementation of decarbonization processes. It included the enhancement of “capacity utilization in existing industrial hydrogen production along the Houston Ship Channel through amine capture technology,” according to a news release.

The team also identified business opportunities in producing ammonia as a liquid carrier by using the Haber-Bosch process that would leverage maritime ammonia tanker fleets to ship to Western Europe and Northeast Asia markets.

"It was an honor to collaborate with my Hydrogen Economy Program teammates to explore business opportunities using existing technologies to produce clean hydrogen and reinvest profits to further advance decarbonization efforts in the future," Johnson says in a news release. "I extend my gratitude to the University of Houston for assembling top-notch resources on the critical topic of clean hydrogen production. By bringing together students, corporate leaders, engineers, and scientists, we are able to join forces to accelerate the renewable hydrogen economy."

Cody Johnson is the CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units. Photo courtesy of SCS

UH’s Hydrogen Economy Program helps energy professionals and students strategically at the world’s energy hub in the Houston area. The program provides a forum for information from faculty and industry leaders. Participants in the University of Houston Hydrogen Economy Program can develop a capstone project by using knowledge from the completed course and then present a business plan for a clean hydrogen start-up venture. The projects were evaluated by a panel of judges after class presentations.

"At the University of Houston, we are committed to advancing the energy transition by bringing diverse skills and knowledge together," Alan Rossiter, executive director of external relations and educational program development for UH Energy, says in a news release. "The Hydrogen Economy Program is one of the many ways we achieve this. With the new cohort beginning in August and registration now open, we look forward to working with a new group of passionate, curious, and intelligent energy professionals and students."

The Hydrogen Economy is a part of UH Energy's Sustainable Energy Development portfolio. The Hydrogen Economy Program is a joint effort by UH and the American Institute of Chemical Engineers.

Led by Haotian Wang (left) and Feng-Yang Chen, the Rice University team published a study this month detailing how its reactor system sustainably converts waste into ammonia. Photo by Jeff Fitlow/Rice University

Houston lab develops reactor that sustainably turns waste into ammonia

seeing green

A team of Rice University engineers has developed a reactor design that can decarbonize ammonia production, produce clean water and potentially have applications in further research into other eco-friendly chemical processes.

Led by Rice associate professor Haotian Wang, the team published a study this month in the journal Nature Catalysis that details how the new reactor system sustainably and efficiently converts nitrates (common pollutants found in industrial wastewater and agricultural runoff) into ammonia, according to the university. The research was supported by Rice and the National Science Foundation.

“Our findings suggest a new, greener method of addressing both water pollution and ammonia production, which could influence how industries and communities handle these challenges,” Wang says in a statement. “If we want to decarbonize the grid and reach net-zero goals by 2050, there is an urgent need to develop alternative ways to produce ammonia sustainably.”

Other methods of creating ammonia include the Haber-Bosh process and electrochemical synthesis. The Haber-Bosh process requires large-scale centralized infrastructure and high temperature and pressure conditions. Meanwhile, electrochemical synthesis requires a high concentration of additive chemicals.

According to Rice, the new reactor requires less additive chemicals than the electrochemical synthesis, allowing nitrates to be converted more sustainably. The reactor relies on an innovative porous solid electrolyte as well as recyclable ions and a three-chamber system to improve the reaction’s efficiency.

Additionally, this development provides an effective water decontamination method.

“We conducted experiments where we flowed nitrate-contaminated water through this reactor and measured the amount of ammonia produced and the purity of the treated water,” Feng-Yang Chen, a Rice graduate student who is the lead author on the study, says. “We discovered that our novel reactor system could turn nitrate-contaminated water into pure ammonia and clean water very efficiently, without the need for extra chemicals. In simple terms, you put wastewater in, and you get pure ammonia and purified water out.”

Pedro Alvarez, the George R. Brown Professor of Civil and Environmental Engineering, director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) and the Water Technologies Entrepreneurship and Research (WaTER) Institute at Rice, says the reactor is "very timely and important" for growing cities that must deal with nitrate-contaminated groundwater supplies it.

"Conventional nitrate removal in drinking water treatment involves ion exchange or membrane filtration by reverse osmosis, which generates brines and transfers the nitrate problem from one phase to another,” he continues.

Wang's lab has been making headlines in recent years for innovative processes and technologies focused on the energy transition.

Last year, the lab published a study in Nature detailing a new technology that uses electricity to remove carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction, generating between 10 to 25 liters of high-purity carbon using only the power of a standard lightbulb.

In 2022, Rice reported that Wang’s lab in the George R. Brown School of Engineering had also replaced rare, expensive iridium with ruthenium, a more abundant precious metal, as the positive-electrode catalyst in a reactor that splits water into hydrogen and oxygen.

The lab received a portion of $10.8 million in research grants from the Houston-based Welch Foundation for research focused on converting carbon dioxide into useful chemicals, such as ethanol, last year. And Solidec, founded by Ryan Duchanois and Yang Xia from Wang's Lab, also received a $100,000 award from Rice as part of the One Small Step Grant program.

Wang has also been named among one of the most-cited researchers in the world.
The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Photo via exxonmobil.com

ExxonMobil’s low-carbon hydrogen project in Baytown adds Air Liquide as partner

team work

Spring-based energy giant ExxonMobil has enlisted Air Liquide as a partner for what’s being billed as the world’s largest low-carbon hydrogen project.

The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Furthermore, Air Liquide will build and operate four units to supply 9,000 metric tons of oxygen and up to 6,500 metric tons of nitrogen each day for the ExxonMobil project.

Air Liquide’s U.S. headquarters is in Houston.

ExxonMobil’s hydrogen production facility is planned for the company’s 3,400-acre Baytown refining and petrochemical complex. The project is expected to produce 1 billion cubic feet of low-carbon hydrogen daily from natural gas and more than 1 million tons of low-carbon ammonia annually while capturing more than 98 percent of the associated carbon emissions.

“Momentum continues to build for the world’s largest low-carbon hydrogen project and the emerging hydrogen market,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The hydrogen project is expected to come online in 2027 or 2028.

ExxonMobil says using hydrogen to fuel its olefins plant at Baytown could reduce sitewide carbon emissions by as much as 30 percent. Meanwhile, the carbon capture and storage (CSUS) component of the project would be capable of storing 10 million metric tons of carbon each year, the company says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What to expect from the 2025 Greentown Labs' Climatetech Summit Houston

where to be

Greentown Labs' Climatetech Summit Houston will take place next Tuesday, Nov. 4, bringing together philanthropists, executives and innovators in the energy transition space.

John Arnold, co-founder and co-chair of Arnold Ventures, will participate in the keynote fireside chat with Greentown CEO Georgina Campbell Flatter. The conversation will explore "top priorities and opportunities in energy innovation today—with a special focus on how these dynamics are playing out in Houston," according to Greentown.

Other highlights will include:

  • Welcome remarks from Houston Mayor John Whitmire
  • A course led by TEX-E Executive Director Sandy Guitar
  • A philanthropy panel featuring Greentown Labs new Head of Philanthropy Stacey Harris
  • The Energy Jobs of the Future, featuring Sameer Bandhu, GE Vernova’s managing director, ventures and licensing
  • An Energy-transition Roadmap, featuring Monica Krishnan, Hermann Lebit and Bobby Tudor
  • What is Climatetech? featuring Kyle Judah, Emerson Denka Wangdi, Laureen Meroueh and Head of Greentown Houston Lawson Gow

Five Greentown Labs startups will also present their pitches at the event. Expect to hear from:

  • MCatalysis Inc. CEO, President, and Founder Michael D. Irwin. Dallas-based MCatalysis develops novel, high-efficiency industrial microwave processes and catalysts to produce low-cost, clean synthetic fuels and chemicals from waste carbon resources.
  • Pike Robotics CEO and co-founder Connor Crawford. Austin-based Pike Robotics provides next-gen robotic solutions for in-service inspection of floating roof storage tanks.
  • Helix Earth CEO and co-founder Rawand Rasheed. Houston-based Helix Earth retrofits commercial HVAC systems to improve energy efficiency.
  • 10DQ CEO Steven Reece. Greentown Boston member 10DQ has developed its Redox Loop Battery, which uses novel, water-based electrolytes to store energy in dense, low-cost, earth-abundant battery materials.
  • Janta Power CEO Mohammed Njie. Dallas-based Janta Power is developing 3D solar towers.

In addition to the startup pitches, attendees will also be able to meet founders and Greentown members during the afternoon startup showcase. A networking reception at Axelrad Houston follows. A separate ticket offers admission to the showcase and networking event only.

See the full agenda here.

California company launches Tesla Megapack battery project in Houston area

power on

Oakland, California-based Nightpeak Energy announced earlier this month that its 150-megawatt battery storage project in Brazoria County, known as Bocanova Power, is now operating to address Houston’s peak capacity needs.

“This battery storage project will enhance grid reliability in the Alvin area while continuing to support integrating renewable energy,” Cary Perrin, president and CEO of the Northern Brazoria County Chamber of Commerce, said in a news release. “I believe we need energy storage now more than ever for its pivotal role in reducing strain on the grid while meeting fast-growing power demand in Texas and Brazoria County."

The project reached commercial operation in August, according to the release. The project utilizes Tesla's Megapack 2 XL battery storage system, and the facility operates under a long-term power purchase agreement with an undisclosed “investment-grade power purchaser.”

“Bocanova Power demonstrates the speed at which Nightpeak Energy is overcoming complex challenges to energize projects that support America's growing need for affordable, reliable, and secure energy,” Paris Hays, co-founder and CEO/CDO of Nightpeak Energy, added in the news release. “Unprecedented AI data center and manufacturing growth has only accelerated the need for these resources.”

Hays added in the release that the company has plans for more energy infrastructure projects in Texas and in the Western U.S.

Nightpeak Energy develops, owns and operates power plants that support the growing capacity needs of a decarbonized grid. It also owns and operates 240 MW of battery storage and natural gas generation facilities.

The company was founded in 2022 and backed by equity funding of up to $200 million from Dallas-based investment firm Energy Spectrum Capital.

Texas ranks low on most energy-efficient states report

by the numbers

Texas has room to improve when it comes to energy efficiency, recent data from WalletHub shows.

The personal finance website ranked Texas at No. 35 on the latest Most & Least Energy-Efficient States list. Texas improved by one spot on the 2025 report, after coming in at No. 36 last year.

The report measured and ranked the efficiency of auto energy and home energy consumption in the 48 U.S. mainland states based on data from the U.S. Census Bureau, National Climatic Data Center, U.S. Energy Information Administration and the U.S. Department of Transportation – Federal Highway Administration.

Texas earned an overall score of 50.60. It was ranked No. 27 for home energy efficiency and No. 41 for auto efficiency. By comparison, No. 1-ranked Vermont earned a score of 85.30, ranking No. 2 for home energy and No. 6 for out energy.

The top five overall states included:

  • No. 1 Vermont
  • No. 2 California
  • No. 3 Washington
  • No. 4 New York
  • No. 5 Massachusetts

South Dakota earned the top rank for home energy efficiency, and Massachusetts earned the top rank for energy efficiency.

“Energy efficiency doesn’t just help save the planet – it also helps save you money by lowering the amount of electricity, gas, oil or other types of energy you need to consume. While there are some steps you can take to become more energy-efficient on your own, living in the right area can give you a big boost," WalletHub analyst Chip Lupo said in the report. "For example, certain states have much better public transportation systems that minimize your need to drive, at least in big cities. Some places also have better-constructed buildings that retain heat better during the winter or stay cooler during the summer.”

According to the report, some progress is being made in increasing energy efficiency across the country. The U.S. Energy Information Administration expects 26 percent of electricity generation in 2026 will come from renewables. A number of them are being developed in the Houston area, including recent announcements like the Pleasure Island Power Collective in Port Arthur.

Still, Houston earned an abysmal ranking on WalletHub's greenest cities in the U.S. report earlier this year, coming in at No. 99 out of 100. Read more here.