The facility in Baytown is expected to produce 28.3 million cubic meters of low-carbon hydrogen daily. Photo via exxonmobil.com

ExxonMobil selected Australia-based engineering and professional services company Worley to provide engineering, procurement and construction services for a proposed hydrogen and ammonia production facility in Baytown, which is expected to have a production capacity of 1 billion cubic feet of blue hydrogen per day. ExxonMobil expects the facility will be the largest of its kind in the world.

“We are delighted to continue our strategic, global relationship with ExxonMobil in its execution of upcoming projects, particularly in delivering this EPC project on the US Gulf Coast, which contributes significantly to strengthening Worley’s backlog,” Chris Ashton, CEO of Worley, states, according to Offshore Energy.

The facility in Baytown is expected to produce 28.3 million cubic meters (1 billion cubic feet) of low-carbon hydrogen daily and nearly 1 million metric tonnes (more than 1 million tons) of ammonia per year, which will also capture more than 98 percent of the associated CO2 emissions.

The facility will leverage advanced carbon capture and storage technologies to reduce emissions associated with hydrogen production. ExxonMobile also said its carbon capture and storage system would be available for use by third-party CO2 emitters in the area.

A final investment decision is expected in 2025 , and an anticipated startup in 2029. “Blue” hydrogen is expected to be a top energy driver in 2025 according to global consultancy Wood Mackenzie who predicts that at least three large-scale blue hydrogen projects in the U.S will reach FID by next year.

The company hopes the new facility will help in creating U.S. jobs and supporting community development initiatives throughout the Houston area, and the state.

Houston global engineering firm McDermott will design a Louisiana project to produce millions of tons of clean ammonia. Image via cleanhydrogenworks.com

Houston group secures contract for major clean ammonia project in Louisiana

locked in

Houston-headquartered McDermott has received a new contract on a Louisiana clean ammonia project.

Clean energy development company Clean Hydrogen Works tapped McDermott for the front-end engineering and design contract for the Ascension Clean Energy Project. ACE — located in Ascension Parish, Louisiana — is jointly developed by CHW with strategic shareholders ExxonMobil, Mitsui O.S.K. Lines, and Hafnia and is expected to initially produce 2.4 million metric tons per annum of clean ammonia and expand to total 7.2 million metric tons per annum production down the road.

“We are thrilled to partner with McDermott, a company renowned for its extensive experience in mega module construction, demonstrated by a remarkable track record of on-time, on-budget execution of major energy and chemicals projects," Johnny Cook, CHW senior vice president of engineering, procurement, and construction, says in a news release. "This collaboration further strengthens key competitive advantages of our project, including being a mega module capable site with ready infrastructure access to gas, shipping and CCS, an unmatched shareholder base with expertise in CCS and maritime transport, and an experienced team with demonstrated success in executing mega module projects.”

The project has carbon capture and sequestration contracts with ExxonMobil and expects regulatory approvals by early 2025. ACE is expected to reach its final investment decision by late 2025 and start production in 2029. McDermott’s Houston office will lead the project with support from its Gurugram, India, office.

“This FEED award is testament to McDermott’s industry-leading mega-module delivery and installation expertise, and the breadth of our capabilities across the energy transition,” Rob Shaul, McDermott’s senior vice president of Low Carbon Solutions, adds. “Our integrated delivery model, with self-perform construction capabilities and portfolio of McDermott-owned, globally diversified, module fabrication yards means we can offer CHW a repeatable modular implementation solution that is expected to maximize value, reduce risk and provide quality assurance.”

Earlier this year, Houston-based Element Fuels completed the pre-construction phase of its hydrogen-powered clean fuels refinery and combined-cycle power plant in the Port of Brownsville — a project that McDermott is also providing FEED services for.

Also recently, McDermott secured an agreement to work on Canada's first commercial green hydrogen and ammonia production facility.

The University of Houston's new hydrogen program selected an Houston executive's team as the top project of the course. Photo via Getty Images

Houston energy leader wins hydrogen program's competition

top project

An executive from Houston-based SCS Technologies is celebrating a win from his time at the University of Houston Hydrogen Economy Program.

Cody Johnson, CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units, was on the winning 2024 Spring Capstone Project team for the UH program with the project, "Business Roadmap for Utilizing Hydrogen in Houston." The presentation outlined possible profits of $1.8 billion over the contract life with $180 million in green H2 investments.

The winning capstone project demonstrated the implementation of decarbonization processes. It included the enhancement of “capacity utilization in existing industrial hydrogen production along the Houston Ship Channel through amine capture technology,” according to a news release.

The team also identified business opportunities in producing ammonia as a liquid carrier by using the Haber-Bosch process that would leverage maritime ammonia tanker fleets to ship to Western Europe and Northeast Asia markets.

"It was an honor to collaborate with my Hydrogen Economy Program teammates to explore business opportunities using existing technologies to produce clean hydrogen and reinvest profits to further advance decarbonization efforts in the future," Johnson says in a news release. "I extend my gratitude to the University of Houston for assembling top-notch resources on the critical topic of clean hydrogen production. By bringing together students, corporate leaders, engineers, and scientists, we are able to join forces to accelerate the renewable hydrogen economy."

Cody Johnson is the CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units. Photo courtesy of SCS

UH’s Hydrogen Economy Program helps energy professionals and students strategically at the world’s energy hub in the Houston area. The program provides a forum for information from faculty and industry leaders. Participants in the University of Houston Hydrogen Economy Program can develop a capstone project by using knowledge from the completed course and then present a business plan for a clean hydrogen start-up venture. The projects were evaluated by a panel of judges after class presentations.

"At the University of Houston, we are committed to advancing the energy transition by bringing diverse skills and knowledge together," Alan Rossiter, executive director of external relations and educational program development for UH Energy, says in a news release. "The Hydrogen Economy Program is one of the many ways we achieve this. With the new cohort beginning in August and registration now open, we look forward to working with a new group of passionate, curious, and intelligent energy professionals and students."

The Hydrogen Economy is a part of UH Energy's Sustainable Energy Development portfolio. The Hydrogen Economy Program is a joint effort by UH and the American Institute of Chemical Engineers.

Led by Haotian Wang (left) and Feng-Yang Chen, the Rice University team published a study this month detailing how its reactor system sustainably converts waste into ammonia. Photo by Jeff Fitlow/Rice University

Houston lab develops reactor that sustainably turns waste into ammonia

seeing green

A team of Rice University engineers has developed a reactor design that can decarbonize ammonia production, produce clean water and potentially have applications in further research into other eco-friendly chemical processes.

Led by Rice associate professor Haotian Wang, the team published a study this month in the journal Nature Catalysis that details how the new reactor system sustainably and efficiently converts nitrates (common pollutants found in industrial wastewater and agricultural runoff) into ammonia, according to the university. The research was supported by Rice and the National Science Foundation.

“Our findings suggest a new, greener method of addressing both water pollution and ammonia production, which could influence how industries and communities handle these challenges,” Wang says in a statement. “If we want to decarbonize the grid and reach net-zero goals by 2050, there is an urgent need to develop alternative ways to produce ammonia sustainably.”

Other methods of creating ammonia include the Haber-Bosh process and electrochemical synthesis. The Haber-Bosh process requires large-scale centralized infrastructure and high temperature and pressure conditions. Meanwhile, electrochemical synthesis requires a high concentration of additive chemicals.

According to Rice, the new reactor requires less additive chemicals than the electrochemical synthesis, allowing nitrates to be converted more sustainably. The reactor relies on an innovative porous solid electrolyte as well as recyclable ions and a three-chamber system to improve the reaction’s efficiency.

Additionally, this development provides an effective water decontamination method.

“We conducted experiments where we flowed nitrate-contaminated water through this reactor and measured the amount of ammonia produced and the purity of the treated water,” Feng-Yang Chen, a Rice graduate student who is the lead author on the study, says. “We discovered that our novel reactor system could turn nitrate-contaminated water into pure ammonia and clean water very efficiently, without the need for extra chemicals. In simple terms, you put wastewater in, and you get pure ammonia and purified water out.”

Pedro Alvarez, the George R. Brown Professor of Civil and Environmental Engineering, director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) and the Water Technologies Entrepreneurship and Research (WaTER) Institute at Rice, says the reactor is "very timely and important" for growing cities that must deal with nitrate-contaminated groundwater supplies it.

"Conventional nitrate removal in drinking water treatment involves ion exchange or membrane filtration by reverse osmosis, which generates brines and transfers the nitrate problem from one phase to another,” he continues.

Wang's lab has been making headlines in recent years for innovative processes and technologies focused on the energy transition.

Last year, the lab published a study in Nature detailing a new technology that uses electricity to remove carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction, generating between 10 to 25 liters of high-purity carbon using only the power of a standard lightbulb.

In 2022, Rice reported that Wang’s lab in the George R. Brown School of Engineering had also replaced rare, expensive iridium with ruthenium, a more abundant precious metal, as the positive-electrode catalyst in a reactor that splits water into hydrogen and oxygen.

The lab received a portion of $10.8 million in research grants from the Houston-based Welch Foundation for research focused on converting carbon dioxide into useful chemicals, such as ethanol, last year. And Solidec, founded by Ryan Duchanois and Yang Xia from Wang's Lab, also received a $100,000 award from Rice as part of the One Small Step Grant program.

Wang has also been named among one of the most-cited researchers in the world.
The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Photo via exxonmobil.com

ExxonMobil’s low-carbon hydrogen project in Baytown adds Air Liquide as partner

team work

Spring-based energy giant ExxonMobil has enlisted Air Liquide as a partner for what’s being billed as the world’s largest low-carbon hydrogen project.

The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Furthermore, Air Liquide will build and operate four units to supply 9,000 metric tons of oxygen and up to 6,500 metric tons of nitrogen each day for the ExxonMobil project.

Air Liquide’s U.S. headquarters is in Houston.

ExxonMobil’s hydrogen production facility is planned for the company’s 3,400-acre Baytown refining and petrochemical complex. The project is expected to produce 1 billion cubic feet of low-carbon hydrogen daily from natural gas and more than 1 million tons of low-carbon ammonia annually while capturing more than 98 percent of the associated carbon emissions.

“Momentum continues to build for the world’s largest low-carbon hydrogen project and the emerging hydrogen market,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The hydrogen project is expected to come online in 2027 or 2028.

ExxonMobil says using hydrogen to fuel its olefins plant at Baytown could reduce sitewide carbon emissions by as much as 30 percent. Meanwhile, the carbon capture and storage (CSUS) component of the project would be capable of storing 10 million metric tons of carbon each year, the company says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil may delay or cancel plans for $7 billion Baytown hydrogen plant

project uncertainty

Spring-based ExxonMobil, the country’s largest oil and gas company, might delay or cancel what would be the world’s largest low-carbon hydrogen plant due to a significant change in federal law. The project carries a $7 billion price tag.

The Biden-era Inflation Reduction Act created a new 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s "One Big Beautiful Bill Act," the window for starting construction of low-carbon hydrogen projects that qualify for the tax credit has narrowed. The Inflation Reduction Act mandated that construction start by 2033. But the Big Beautiful Bill switched the construction start time to early 2028.

“While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” ExxonMobil Chairman and CEO Darren Woods said during the company’s recent second-quarter earnings call.

Woods said ExxonMobil is working to determine whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit will help pave the way for a “broader” low-carbon hydrogen market.

“If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods said.

“We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

Woods said ExxonMobil is trying to nail down sales contracts connected to the project, including exports of ammonia to Asia and Europe and sales of hydrogen in the U.S.

ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company has said the plant is slated to go online in 2027 and 2028.

As it stands now, ExxonMobil wants the Baytown plant to produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The company has said the project could store as much as 10 million metric tons of CO2 per year.

EPA scraps $7B solar program, stripping Texas of hundreds of millions in clean energy funds

funding cut

The U.S. Environmental Protection Agency is ending a $7 billion Biden-era program that was supposed to enable low-income Americans to access affordable solar power. The program, which EPA Administrator Lee Zeldin called a “boondoggle,” would have benefited more than 900,000 U.S. households.

In line with the EPA’s action, the Lone Star State is losing a $249.7 million grant awarded last year to the Harris County-led Texas Solar for All Coalition. The grant money would have equipped more than 46,000 low-income and disadvantaged communities and households in Texas with residential solar power. The nonprofit Solar United Neighbors organization said Texas had already begun to roll out this initiative.

Also slipping out of Texas’ hands are:

  • A more than $156 million 19-state grant awarded to the Clean Energy Fund of Texas in partnership with the Bullard Center for Environmental and Climate Justice at Houston’s Texas Southern University. The Clean Energy Fund is a Houston-based “green bank” that backs investments in solar and wind power.
  • Part of a $249.3 million multistate grant awarded to the Community Power Coalition’s Powering America Together Program. The nonprofit Inclusive Prosperity Capital organization leads the coalition.
  • Part of a $249.8 million multistate grant awarded to the Solar Access for Nationwide Affordable Housing Program, led by the nonprofit GRID Alternatives organization.

In a post on the X social media platform, Zeldin said the recently passed “One Big Beautiful Bill” killed the Greenhouse Gas Reduction Fund, which would have financed the $7 billion Solar for All program.

“The bottom line is this: EPA no longer has the statutory authority to administer the program or the appropriated funds to keep this boondoggle alive,” Zeldin said.

Anya Schoolman, executive director of Washington, D.C.-based Solar United Neighbors, accused the EPA of illegally terminating the Solar for All program. She said ending the program “harms families struggling with rising energy costs and will cost us good local jobs.”

U.S. Sen. Bernie Sanders, a Vermont independent, joined Schoolman in alleging the EPA’s “outrageous” action is illegal. Sanders introduced the legislation that established the Solar for All program.

The senator lashed out at President Trump for axing the program in order “to protect the obscene profits of his friends in the oil and gas industry.”

New UH white paper details Texas grid's shortfalls

grid warning

Two University of Houston researchers are issuing a warning about the Texas power grid: Its current infrastructure falls short of what’s needed to keep pace with rising demand for electricity.

The warning comes in a new whitepaper authored by Ramanan Krishnamoorti, vice president of energy and innovation at UH, and researcher Aparajita Datta, a Ph.D candidate at UH.

“As data centers pop up around the Lone Star State, electric vehicles become more commonplace, industries adopt decarbonization technologies, demographics change, and temperatures rise statewide, electricity needs in Texas could double by 2035,” a UH news release says. “If electrification continues to grow unconstrained, demand could even quadruple over the next decade.”

Without significant upgrades to power plants and supporting infrastructure, Texas could see electricity shortages, rising power costs and more stress on the state’s grid in coming years, the researchers say. The Electric Reliability Council of Texas (ERCOT) grid serves 90 percent of the state.

“Texas, like much of the nation, has fallen behind on infrastructure updates, and the state’s growing population, diversified economy and frequent severe weather events are increasing the strain on the grid,” Datta says. “Texas must improve its grid to ensure people in the state have access to reliable, affordable, and resilient energy systems so we can preserve and grow the quality of life in the state.”

The whitepaper’s authors caution that Texas faces a potential electricity shortfall of up to 40 gigawatts annually by 2035 if the grid doesn’t expand, with a more probable shortfall of about 27 gigawatts. And they allude to a repeat of the massive power outages in Texas during Winter Storm Uri in February 2021.

One gigawatt of electricity can power an estimated 750,000 homes in Texas, according to the Texas Solar + Storage Association.

The state’s current energy mix includes 40 percent natural gas, 29 percent wind, 12 percent coal, 10 percent nuclear and eight percent solar, the authors say.

Despite surging demand, 360 gigawatts of solar and battery storage projects are stuck in ERCOT’s queue, according to the researchers, and new natural gas plants have been delayed or withdrawn due to supply chain challenges, bureaucratic delays, policy uncertainties and shifting financial incentives.

Senate Bill 6, recently signed by Gov. Greg Abbott, calls for demand-response mandates, clearer rate structures and new load management requirements for big users of power like data centers and AI hubs.

“While these provisions are a step in the right direction,” says Datta, “Texas needs more responsive and prompt policy action to secure grid reliability, address the geographic mismatch between electricity demand and supply centers, and maintain the state’s global leadership in energy.”