The facility in Baytown is expected to produce 28.3 million cubic meters of low-carbon hydrogen daily. Photo via exxonmobil.com

ExxonMobil selected Australia-based engineering and professional services company Worley to provide engineering, procurement and construction services for a proposed hydrogen and ammonia production facility in Baytown, which is expected to have a production capacity of 1 billion cubic feet of blue hydrogen per day. ExxonMobil expects the facility will be the largest of its kind in the world.

“We are delighted to continue our strategic, global relationship with ExxonMobil in its execution of upcoming projects, particularly in delivering this EPC project on the US Gulf Coast, which contributes significantly to strengthening Worley’s backlog,” Chris Ashton, CEO of Worley, states, according to Offshore Energy.

The facility in Baytown is expected to produce 28.3 million cubic meters (1 billion cubic feet) of low-carbon hydrogen daily and nearly 1 million metric tonnes (more than 1 million tons) of ammonia per year, which will also capture more than 98 percent of the associated CO2 emissions.

The facility will leverage advanced carbon capture and storage technologies to reduce emissions associated with hydrogen production. ExxonMobile also said its carbon capture and storage system would be available for use by third-party CO2 emitters in the area.

A final investment decision is expected in 2025 , and an anticipated startup in 2029. “Blue” hydrogen is expected to be a top energy driver in 2025 according to global consultancy Wood Mackenzie who predicts that at least three large-scale blue hydrogen projects in the U.S will reach FID by next year.

The company hopes the new facility will help in creating U.S. jobs and supporting community development initiatives throughout the Houston area, and the state.

Houston global engineering firm McDermott will design a Louisiana project to produce millions of tons of clean ammonia. Image via cleanhydrogenworks.com

Houston group secures contract for major clean ammonia project in Louisiana

locked in

Houston-headquartered McDermott has received a new contract on a Louisiana clean ammonia project.

Clean energy development company Clean Hydrogen Works tapped McDermott for the front-end engineering and design contract for the Ascension Clean Energy Project. ACE — located in Ascension Parish, Louisiana — is jointly developed by CHW with strategic shareholders ExxonMobil, Mitsui O.S.K. Lines, and Hafnia and is expected to initially produce 2.4 million metric tons per annum of clean ammonia and expand to total 7.2 million metric tons per annum production down the road.

“We are thrilled to partner with McDermott, a company renowned for its extensive experience in mega module construction, demonstrated by a remarkable track record of on-time, on-budget execution of major energy and chemicals projects," Johnny Cook, CHW senior vice president of engineering, procurement, and construction, says in a news release. "This collaboration further strengthens key competitive advantages of our project, including being a mega module capable site with ready infrastructure access to gas, shipping and CCS, an unmatched shareholder base with expertise in CCS and maritime transport, and an experienced team with demonstrated success in executing mega module projects.”

The project has carbon capture and sequestration contracts with ExxonMobil and expects regulatory approvals by early 2025. ACE is expected to reach its final investment decision by late 2025 and start production in 2029. McDermott’s Houston office will lead the project with support from its Gurugram, India, office.

“This FEED award is testament to McDermott’s industry-leading mega-module delivery and installation expertise, and the breadth of our capabilities across the energy transition,” Rob Shaul, McDermott’s senior vice president of Low Carbon Solutions, adds. “Our integrated delivery model, with self-perform construction capabilities and portfolio of McDermott-owned, globally diversified, module fabrication yards means we can offer CHW a repeatable modular implementation solution that is expected to maximize value, reduce risk and provide quality assurance.”

Earlier this year, Houston-based Element Fuels completed the pre-construction phase of its hydrogen-powered clean fuels refinery and combined-cycle power plant in the Port of Brownsville — a project that McDermott is also providing FEED services for.

Also recently, McDermott secured an agreement to work on Canada's first commercial green hydrogen and ammonia production facility.

The University of Houston's new hydrogen program selected an Houston executive's team as the top project of the course. Photo via Getty Images

Houston energy leader wins hydrogen program's competition

top project

An executive from Houston-based SCS Technologies is celebrating a win from his time at the University of Houston Hydrogen Economy Program.

Cody Johnson, CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units, was on the winning 2024 Spring Capstone Project team for the UH program with the project, "Business Roadmap for Utilizing Hydrogen in Houston." The presentation outlined possible profits of $1.8 billion over the contract life with $180 million in green H2 investments.

The winning capstone project demonstrated the implementation of decarbonization processes. It included the enhancement of “capacity utilization in existing industrial hydrogen production along the Houston Ship Channel through amine capture technology,” according to a news release.

The team also identified business opportunities in producing ammonia as a liquid carrier by using the Haber-Bosch process that would leverage maritime ammonia tanker fleets to ship to Western Europe and Northeast Asia markets.

"It was an honor to collaborate with my Hydrogen Economy Program teammates to explore business opportunities using existing technologies to produce clean hydrogen and reinvest profits to further advance decarbonization efforts in the future," Johnson says in a news release. "I extend my gratitude to the University of Houston for assembling top-notch resources on the critical topic of clean hydrogen production. By bringing together students, corporate leaders, engineers, and scientists, we are able to join forces to accelerate the renewable hydrogen economy."

Cody Johnson is the CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units. Photo courtesy of SCS

UH’s Hydrogen Economy Program helps energy professionals and students strategically at the world’s energy hub in the Houston area. The program provides a forum for information from faculty and industry leaders. Participants in the University of Houston Hydrogen Economy Program can develop a capstone project by using knowledge from the completed course and then present a business plan for a clean hydrogen start-up venture. The projects were evaluated by a panel of judges after class presentations.

"At the University of Houston, we are committed to advancing the energy transition by bringing diverse skills and knowledge together," Alan Rossiter, executive director of external relations and educational program development for UH Energy, says in a news release. "The Hydrogen Economy Program is one of the many ways we achieve this. With the new cohort beginning in August and registration now open, we look forward to working with a new group of passionate, curious, and intelligent energy professionals and students."

The Hydrogen Economy is a part of UH Energy's Sustainable Energy Development portfolio. The Hydrogen Economy Program is a joint effort by UH and the American Institute of Chemical Engineers.

Led by Haotian Wang (left) and Feng-Yang Chen, the Rice University team published a study this month detailing how its reactor system sustainably converts waste into ammonia. Photo by Jeff Fitlow/Rice University

Houston lab develops reactor that sustainably turns waste into ammonia

seeing green

A team of Rice University engineers has developed a reactor design that can decarbonize ammonia production, produce clean water and potentially have applications in further research into other eco-friendly chemical processes.

Led by Rice associate professor Haotian Wang, the team published a study this month in the journal Nature Catalysis that details how the new reactor system sustainably and efficiently converts nitrates (common pollutants found in industrial wastewater and agricultural runoff) into ammonia, according to the university. The research was supported by Rice and the National Science Foundation.

“Our findings suggest a new, greener method of addressing both water pollution and ammonia production, which could influence how industries and communities handle these challenges,” Wang says in a statement. “If we want to decarbonize the grid and reach net-zero goals by 2050, there is an urgent need to develop alternative ways to produce ammonia sustainably.”

Other methods of creating ammonia include the Haber-Bosh process and electrochemical synthesis. The Haber-Bosh process requires large-scale centralized infrastructure and high temperature and pressure conditions. Meanwhile, electrochemical synthesis requires a high concentration of additive chemicals.

According to Rice, the new reactor requires less additive chemicals than the electrochemical synthesis, allowing nitrates to be converted more sustainably. The reactor relies on an innovative porous solid electrolyte as well as recyclable ions and a three-chamber system to improve the reaction’s efficiency.

Additionally, this development provides an effective water decontamination method.

“We conducted experiments where we flowed nitrate-contaminated water through this reactor and measured the amount of ammonia produced and the purity of the treated water,” Feng-Yang Chen, a Rice graduate student who is the lead author on the study, says. “We discovered that our novel reactor system could turn nitrate-contaminated water into pure ammonia and clean water very efficiently, without the need for extra chemicals. In simple terms, you put wastewater in, and you get pure ammonia and purified water out.”

Pedro Alvarez, the George R. Brown Professor of Civil and Environmental Engineering, director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) and the Water Technologies Entrepreneurship and Research (WaTER) Institute at Rice, says the reactor is "very timely and important" for growing cities that must deal with nitrate-contaminated groundwater supplies it.

"Conventional nitrate removal in drinking water treatment involves ion exchange or membrane filtration by reverse osmosis, which generates brines and transfers the nitrate problem from one phase to another,” he continues.

Wang's lab has been making headlines in recent years for innovative processes and technologies focused on the energy transition.

Last year, the lab published a study in Nature detailing a new technology that uses electricity to remove carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction, generating between 10 to 25 liters of high-purity carbon using only the power of a standard lightbulb.

In 2022, Rice reported that Wang’s lab in the George R. Brown School of Engineering had also replaced rare, expensive iridium with ruthenium, a more abundant precious metal, as the positive-electrode catalyst in a reactor that splits water into hydrogen and oxygen.

The lab received a portion of $10.8 million in research grants from the Houston-based Welch Foundation for research focused on converting carbon dioxide into useful chemicals, such as ethanol, last year. And Solidec, founded by Ryan Duchanois and Yang Xia from Wang's Lab, also received a $100,000 award from Rice as part of the One Small Step Grant program.

Wang has also been named among one of the most-cited researchers in the world.
The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Photo via exxonmobil.com

ExxonMobil’s low-carbon hydrogen project in Baytown adds Air Liquide as partner

team work

Spring-based energy giant ExxonMobil has enlisted Air Liquide as a partner for what’s being billed as the world’s largest low-carbon hydrogen project.

The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Furthermore, Air Liquide will build and operate four units to supply 9,000 metric tons of oxygen and up to 6,500 metric tons of nitrogen each day for the ExxonMobil project.

Air Liquide’s U.S. headquarters is in Houston.

ExxonMobil’s hydrogen production facility is planned for the company’s 3,400-acre Baytown refining and petrochemical complex. The project is expected to produce 1 billion cubic feet of low-carbon hydrogen daily from natural gas and more than 1 million tons of low-carbon ammonia annually while capturing more than 98 percent of the associated carbon emissions.

“Momentum continues to build for the world’s largest low-carbon hydrogen project and the emerging hydrogen market,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The hydrogen project is expected to come online in 2027 or 2028.

ExxonMobil says using hydrogen to fuel its olefins plant at Baytown could reduce sitewide carbon emissions by as much as 30 percent. Meanwhile, the carbon capture and storage (CSUS) component of the project would be capable of storing 10 million metric tons of carbon each year, the company says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Woodlands company licenses free patents to ERCOT to boost grid reliability

grid deal

Lancium, a company based in The Woodlands that specializes in infrastructure for connecting large-scale data centers to power grids, is licensing a portfolio of patents to the Electric Reliability Council of Texas (ERCOT) at no cost.

In a news release, Lancium says the intellectual property agreement “ensures ERCOT can sublicense these patents freely, thereby expanding market participation opportunities without risk of patent infringement disputes.”

“This agreement exemplifies Lancium’s dedication to supporting grid stability and innovation across the ERCOT region,” Michael McNamara, CEO of Lancium, said in a news release. “While these patents represent significant technological advancements, we believe that enabling ERCOT and its market participants to operate freely is more valuable for the long-term reliability and resilience of the Texas grid.”

The licensed patents encompass Lancium technologies that support load resources in ERCOT’s market, which covers about 90 percent of Texas. Specifically, the patents deal with controllable load resources. A controlled load resource allows ERCOT and other grids to increase or decrease power consumption during peak periods or emergencies.

ERCOT predicts power demand in Texas will nearly double by 2030, “in part due to more requests to plug into the grid from large users like data centers, crypto mining facilities, hydrogen production plants, and oil and gas companies,” The Texas Tribune reported.

Harris County looks to future with new Climate Justice Plan

progress plan

Harris County commissioners approved a five-point Climate Justice Plan last month with a 3-1 vote by Harris County commissioners. The plan was created by the Office of County Administration’s Office of Sustainability and the nonprofit Coalition for Environment, Equity and Resilience.

“Climate action planning that centers on justice has the potential to spark innovative thinking and transformative actions that will lead to meaningful and just transitions in communities, policies, funding mechanisms, and implementation strategies,” the 59-page report reads.

The plan seeks to address issues relating to ecology, infrastructure, economy, community and culture. Here’s a breakdown:

Ecology

The plan will work towards clean air, water, and soil efforts that support the health of the environment, renewable energy that reduces greenhouse gases and pollution, and conservation and protection of our natural resources. Some action items include:

  • Increasing resources for local government agencies
  • Developing a free native seed bank at all libraries
  • Identifying partners and funding streams to reduce the costs of solar power for area households
  • Producing renewable energy on large tracts of land
  • Expanding tree planting by 20 percent
  • Providing tree maintenance and restoration efforts
  • Incentivizing gray water systems and filtration to conserve fresh water

Economy

In terms of the economy, the Climate Justice Plan wants the basic needs of the community met and wants to also incentivize resilience, sustainability, and climate solutions, and recycling and reuse methods. Specific actions include:

  • Quantifying the rising costs associated with climate change
  • Expanding resources and partnering with organizations to support programs that provide food, utility, housing, and direct cash assistance
  • Supporting a coalition of area non-profit organizations and county offices to strengthen social service support infrastructure
  • Supporting home repair, solar installation, and weatherization programs
  • Identify methods to expand free and efficient recycling and composting services
  • Creating a climate tax levied on greenhouse gas emissions to develop a climate fund to offset the impacts of pollution

Infrastructure

As Houston has been prone to hurricanes and flooding damage, the infrastructure portion of the plan aims to protect the region from risks through preventative floodplain and watershed management. Highlights include:

  • Investing in generators and solar power, plus battery backup and bidirectional EV charging for all county libraries
  • Providing more heating and cooling centers with charging stations
  • Coordinating and deploying community microgrids, especially in neighborhoods prone to losing power
  • Seeking partnerships and funding for low- or no-cost water purifiers for areas with the highest needs
  • Protecting the electric grid through regular maintenance and upgrading, and advocating for greater accountability and responsiveness among appointed officials
  • Developing regulations to require resilient power line infrastructure to prevent outages and failures in new developments

Community and Culture

Housing, a strong economy and access to affordable and healthy food will be achieved under the community aspect of the plan. Under culture, the plan seeks to share knowledge and build trust. Key goals include:

  • Developing a campaign to promote the use of the Harris County 311 system to identify critical community concerns
  • Supporting the development of a Community Housing Plan that ensures stable and safe housing
  • Advocating for revisions to Federal Emergency Management Agency (FEMA) disaster funding to account for renters’ losses and unmet housing needs
  • Developing and funding a whole-home program for repairs, weatherization, and solar energy
  • Developing culturally relevant public relations campaigns to increase knowledge of health, environment and biodiversity across generations
Read the full plan here.

Houston company completes orphan well decommission project in the Gulf

temporary abandonment

Houston-based Promethean Energy announced this month that it has successfully decommissioned offshore orphaned wells in the Matagorda Island lease area.

Around this time last year, the company shared that it would work on the temporary abandonment of nine orphan wells on behalf of the Department of Interior's Bureau of Safety and Environmental Enforcement, or BSEE, in the area. Promethean is known for decommissioning mature assets in a cost-effective and environmentally sustainable manner.

“Our team is incredibly proud to have completed this critical work efficiently, safely, and ahead of budget,” Steve Louis, SVP of decommissioning at Promethean Energy, said in a news release. “By integrating our expertise, technologies and strategic partnerships, we have demonstrated that decommissioning can be both cost-effective and environmentally responsible.”

The company plans to use the Matagora Island project as a replicable model to guide similar projects worldwide. The project used comprehensive drone inspections, visual intelligence tools for safety preparations and detailed well diagnostics to plug the wells.

Next up, Promethean is looking to decommission more of the estimated 14,000 unplugged wells in the Gulf.

"Building on our strong execution performance, our strategy is to continue identifying synergies with other asset owners, fostering collaboration, and developing sustainable decommissioning campaigns that drive efficiency across the industry," Ernest Hui, chief strategy officer of Promethean Energy, added in the release.