Houston Energy and Climate Startup Week is coming back for a second year. Photo via GHP

Six local organizations focused on the energy transition have teamed up to bring back Houston Energy and Climate Startup Week.

The second annual event will take place Sept. 15-19, according to an announcement. The Ion District will host many of the week's events.

Houston Energy and Climate Startup Week was founded in 2024 by Rice Alliance for Technology and Entrepreneurship, Halliburton Labs, Greentown Labs, Houston Energy Transition Initiative (HETI), Digital Wildcatters and Activate.

“Houston Energy and Climate Startup Week was created to answer a fundamental question: Can we achieve more by working together than we can alone?” Jane Stricker, senior vice president at the Greater Houston Partnership and executive director of HETI, said in the release.

So far, events for the 2025 Houston Energy and Climate Startup Week include an introduction to climatetech accelerator Activate's latest cohort, the Rice Alliance Energy Tech Venture Forum, a showcase from Greentown Labs' ACCEL cohort, and Halliburton Labs Pitch Day.

Houston organizations New Climate Ventures and Digital Wildcatters, along with Global Corporate Venturing, are slated to offer programming again in 2025. And new partners, Avatar Innovations and Decarbonization Partners, are slated to introduce events. Find a full schedule here.

Other organizations can begin entering calendar submissions starting in May, according to the release.

Last year, Houston Energy and Climate Startup Week welcomed more than 2,000 attendees, investors and industry leaders to more than 30 events. It featured more than 100 speakers and showcased more than 125 startups.

"In 2024, we set out to build something with lasting impact—rooted in the ingenuity of Houston’s technologists and founders. Thanks to a collaborative effort across industry, academia, and startups, we’ve only just begun to showcase Houston’s strengths and invite others to be part of this movement," Stricker added in the release. "We can’t wait to see the city rise to the occasion again in 2025.”

Rice professor and Solidec co-founder Haotian Wang's research enables CO2 to be converted into valuable chemicals and fuels. Photo courtesy Welch Foundation.

Houston clean energy pioneer earns prestigious Welch Foundation award

Awards Season

A Rice University professor has earned a prestigious award from the Houston-based Welch Foundation, which supports chemistry research.

The foundation gave its 2025 Norman Hackerman Award in Chemical Research to Haotian Wang for his “exceptionally creative” research involving carbon dioxide electrochemistry. His research enables CO2 to be converted into valuable chemicals and fuels.

The award included $100,000 and a bronze sculpture.

“Dr. Wang’s extensive body of work and rigorous pursuit of efficient electrochemical solutions to practical problems set him apart as a top innovator among early-career researchers,” Catherine Murphy, chairwoman of the foundation’s Scientific Advisory Board, said in a news release.

Wang is an associate professor in the Department of Chemical and Biomolecular Engineering at Rice. The department’s Wang Group develops nanomaterials and electrolyzers for energy and environmental uses, such as energy storage, chemical and fuel generation, green synthesis and water treatment.

Wang also is co-founder of Solidec, a Houston startup that aims to turn his innovations into low-carbon fuels, carbon-negative hydrogen and carbon-neutral peroxide. The startup extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions.

Solidec has been selected for Chevron Technology Ventures’ catalyst program, a Rice One Small Step grant, a U.S. Department of Energy grant, and the first cohort of the Activate Houston program.

“Dr. Wang’s use of electrochemistry to close the carbon cycle and develop renewable sources of industrial chemicals directly intersects with the Welch Foundation mission of advancing chemistry while improving life,” Fred Brazelton, chairman and director of the Welch Foundation, said in the release.

Ramamoorthy Ramesh, executive vice president for research at Rice University, added: “We are proud to (Dr. Wang) at Rice. He’s using chemical engineering to solve a big problem for humanity, everything that the Welch Foundation stands for.”

Last year, the Hackerman Award went to Baylor College of Medicine's Livia Schiavinato Eberlin, who's known for her groundbreaking work in the application of mass spectrometry technologies, which are changing how physicians treat cancer and analyze tissues. Read more here.

The inaugural Activate Houston cohort has 11 fellows across energy, materials, life sciences, space, and other sectors. Photo via activate.org

6 energy transition innovators named to inaugural Houston hardtech fellowship cohort

onboarding

A national hardtech-focused organization has named its 2024 batch of innovators, which includes the inaugural Houston-based cohort.

Activate named 62 fellows and 50 companies for is latest class, which spans Berkley, California — where the organization is based, Boston, New York, and Houston. Additionally, Activate Anywhere, the program's virtual and remote cohort, was named. According to Activate, it received over 1,000 applicants.

“People, not ideas alone, move the world forward. It is through the drive and determination of brilliant scientists and engineers that we are witnessing true progress,” says Activate CEO Cyrus Wadia in a news release. “Our current Activate Fellows and alumni are already pioneering innovative solutions that make a measurable difference. We’re thrilled to support the next 62 visionaries who will lead the charge in addressing our most urgent issues through groundbreaking science and technology.”

It's the first year Activate has hosted a Houston-based cohort. The organization initially announced its expansion early last year. The inaugural cohort has 11 fellows across energy, materials, life sciences, space, and other sectors.

The named Houston fellows who are working on energy transition solutions include:

  • Krish Mehta, founder and CEO of Phoenix Materials, a company that decarbonizes concrete using industrial waste.
  • Gabriel Cossio, founder and CEO of Nanoscale Labs, which is developing a high-throughput and low-cost nanomanufacturing system.
  • Matthew McDermott, founder and CEO of Refound Materials, a materials technology company developing more efficient synthesis recipes for accelerated materials discovery.
  • Alec Ajnsztajn, founder and CEO of Coflux Purification, a company that's creating a product that allows industries and water providers to cheaply remove forever chemicals to provide safe drinking water at a fraction of current energy use.
  • Ryan DuChanois and Yang Xia , co-founders of Solidec, a Houston-based startup redefining chemical manufacturing.

The rest of the cohort includes:

  • Meagan Pitcher, co-founder and CEO of Bairitone Health, which brings advanced imaging diagnostics into the home environment.
  • Wei Meng, co-founder and CEO of LumiStrain, a startup offering novel technology for mechanical strain mapping.
  • Sonia Dagan of Atolla Tech, which is developing a lidar and machine-learning algorithm for identifying and quantifying airborne insects.
  • Rodrigo Alvarez-Icaza, founder and CEO of Elysium Robotics, a company that's replacing electric motors with muscle-like actuators to enable massive deployment of highly capable and low-cost robotic systems.
  • Blake Herren, CEO and Co-founder of Raven Space Systems, which is modernizing composite manufacturing with 3D printing and Industry 4.0 solutions to build the factories of the future.
Calling all hardtech innovators in Houston. Photo via Getty Images

Hardtech-focused accelerator program opens applications for inaugural Houston cohort

apply now

As of today, Houston innovators can apply for a new-to-Houston program that supports researchers on their entrepreneurial journeys.

Coinciding with Climate Week NYC Activate opened application period for its 2024 cohort. Applications close October 17.

“Climate Week is a premier showcase for innovation, and the opening of Activate applications couldn’t come at a more aligned time,” Activate Executive Managing Director Aimee Rose says in a news release. “It’s the perfect moment for innovators to connect, plan, and gain momentum when they’re most inspired. We’re poised and ready to support the next wave of brilliant scientists driving real change."

Applications are open across Activate's five programs. The two-year, hardtech-focused program was founded in Berkeley, California, in 2015 and expanded to Boston and New York before launching its virtual program, Activate Anywhere. Activate announced its expansion into Houston earlier this year, naming Jeremy Pitts as Houston managing director.

“Activate’s recruitment process is crucial, as it centers around finding scientists directly interested in solving urgent problems,” Pitts says. “Activate fellows are turning their technical breakthroughs into businesses that can help industries like manufacturing, energy, chemicals, computing, and agriculture, to meet their decarbonization and resiliency goals.”

Activate is looking for local and regional early-stage founders — who have raised less than $2 million in funding — who are working on high-impact technology. Each cohort consists of 10 fellows that join the program for two years. The fellows receive a living stipend, connections from Activate's robust network of mentors, and access to a curriculum specific to the program.

While the program is industry agnostic, Activate Houston is likely going to attract energy transition and climate tech companies like Fervo Energy, a Houston-based geothermal tech company, which went through the program in 2018.

The 2024 cohort, which kicks off with this application period, is the first for Activate's new CEO, Cyrus Wadia, who was named to the executive position on September 18. His leadership takes effect next month.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.