Here were this year's most-read funding news stories on EnergyCapital. Photo via Getty Images

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. From firms with fresh funding to deploy to energy tech companies to startups raising venture capital investment, Houston has some wins to celebrate this year when you follow the money. Here were the top five most-read articles — according to EnergyCapital reporting — covering investment deals of 2024. Be sure to click through to read the full story.

Houston PE firm unveils oversubscribed $450M fund to advance nuclear power innovation

Pelican Energy Partners has raised more than it intended with its new nuclear-focused fund. Photo via Getty Images

Houston-based private equity firm Pelican Energy Partners has raised a $450 million fund to invest in nuclear energy services and equipment companies.

Pelican had aimed to raise $300 million for Pelican Energy Partners Base Zero LP and had imposed an initial “hard cap” of $400 million. Investors include endowments, foundations, family offices, and pension plans.

As of the fund’s closing date, the fund had wrapped up six investments, with several more deals expected to close by the end of this year. Continue reading.

Robotics co. with growing Houston presence closes series B

The advanced submersible robotics company will put the funds toward international expansion. Photo courtesy of Square Robot

Houston- and Boston-based Square Robot Inc. closed a series B round of funding last month.

The advanced submersible robotics company raised $13 million, according to Tracxn.com, and says it will put the funds toward international expansion.

"This Series B round, our largest to date, enables us to accelerate our growth plans and meet the surging global demand for our services,” David Lamont, CEO, said in a statement. Continue reading.

Houston industrial decarbonization-focused PE firm scores $725M to launch new business unit

HF Capital, the Knoxville, Tennessee-based investment arm of the Haslam family, made the multimillion-dollar commitment to set up Ara Energy Decarbonization. Photo via arapartners.com

Houston-based Ara Partners, a private equity firm that focuses on industrial decarbonization investments, is receiving up to $725 million from a Tennessee-based family office to launch an energy decarbonization unit.

HF Capital, the Knoxville, Tennessee-based investment arm of the Haslam family, made the multimillion-dollar commitment to set up Ara Energy Decarbonization. The new business will work toward reducing carbon emissions at ethanol plants, natural gas power plants, and other traditional energy assets.

The Haslam family founded Pilot Co., North America’s largest transportation fuel business and chain of travel centers. Shameek Konar, former CEO of Pilot, has been tapped to lead Ara Energy Decarbonization. Continue reading.

Houston-based clean energy site developer raises $300M to decarbonize big tech projects

As emerging technology continues to grow electricity load demand, Cloverleaf has identified an opportunity to develop large-scale digital infrastructure sites powered by low-carbon electricity. Photo via Getty Images

Houston energy executives have started a new company dedicated to developing clean-powered infrastructure for the large electric loads.

Cloverleaf Infrastructure, dually headquartered in Houston and Seattle, Washington, announced its launch and $300 million raised from NGP and Sandbrook Capital, two private equity firms. The company's management team also invested in the company.

As emerging technology continues to grow electricity load demand, Cloverleaf has identified an opportunity to develop large-scale digital infrastructure sites powered by low-carbon electricity.

"The rapid growth in demand for electricity to power cloud computing and artificial intelligence poses a major climate risk if fueled by high-emission fossil fuels," David Berry, Cloverleaf's CEO, says in a news release. "However, it's also a major opportunity to catalyze the modernization of the US grid and the transition to a smarter and more sustainable electricity system through a novel approach to development." Continue reading.

Investors from Houston and Boston fuel Greentown with $4M commitment

A mix of public and private investors have funded Greentown Labs. Photo via GreentownLabs.com

Greentown Labs, a climatetech incubator with locations in the Houston and Boston areas, has announced it has received funding from a mix of investors.

The $4 million in funding came from both of the Houston and Massachusetts locations. Houston investors included Bobby Tudor, CEO of Artemis Energy Partners and chairman of the Houston Energy Transition Initiative; David Baldwin, co-founder of OpenMinds and TEX-E and partner at SCF Partners; and Rice University. Other investors included MassDevelopment and the City of Somerville.

“The challenges of the energy transition are immense, and the role played by technology incubators like Greentown Labs is essential,” Tudor says in a news release. “We believe this role, which is a partnership between academia, industry, philanthropists, entrepreneurs, and governments, is the best way to get to effective, scalable solutions in a time frame that the urgency of the challenge requires. We need all hands on deck, and this partnership between Massachusetts and Texas can be a role model for others.” Continue reading.

Here's what report-based news article covering Houston and Texas amid the energy transition trended this year. Photo via Getty Images

How Houston stacks up: Here were 2024's top report-based, energy-focused articles

year in review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. Progress can be tracked in a number of ways, and reports help shine a light on the city and state's movement toward a cleaner energy industry. The following report-based articles that stood out to readers this year — be sure to click through to read the full story.


Houston's energy industry deemed both a strength and weakness on global cities report

Houston could have ranked higher on a global report of top cities in the world if it had a bit more business diversification. Photo via Getty Images

A new analysis positions the Energy Capital of the World as an economic dynamo, albeit a flawed one.

The recently released Oxford Economics Global Cities Index, which assesses the strengths and weaknesses of the world’s 1,000 largest cities, puts Houston at No. 25.

Houston ranks well for economics (No. 15) and human capital (No. 18), but ranks poorly for governance (No. 184), environment (No. 271), and quality of life (No. 298).

New York City appears at No. 1 on the index, followed by London; San Jose, California; Tokyo; and Paris. Dallas lands at No. 18 and Austin at No. 39.

In its Global Cities Index report, Oxford Economics says Houston’s status as “an international and vertically integrated hub for the oil and gas sector makes it an economic powerhouse. Most aspects of the industry — downstream, midstream, and upstream — are managed from here, including the major fuel refining and petrochemicals sectors.” Continue reading.

Report: Solar tops coal in Texas for energy generation for the first time

In Texas last month, coal use dropped and solar energy soared, according to a new report. Photo via Pexels

For the first time in Texas, according to a recent report, solar energy generation surpassed the output by coal.

The report — from the Institute For Energy Economics and Financial Analysis — sourced the Energy Information Administration’s hourly grid monitor for March 2024. This shift in a predominantly oil and gas dominated history of Texas energy output, was due to solar power’s 3.26 million megawatt-hours to Electric Reliability Council of Texas (ERCOT) grid, compared to coal’s 2.96 million MWh.

In addition, coal’s market share fell below 10 percent to 9 percent for the first time ever, to just over 9 percent. The increase in solar energy pushed solar’s share of ERCOT generation to more than 10 percent for the month, which was also a first. Continue reading.

Houston rises as emerging hub for $6B global AI in oil and gas industry, per new report

The research outfit says North America leads global AI growth in oil and gas, with Houston playing a pivotal role. Image via Shutterstock

Houston is emerging as a hub for the development of artificial intelligence in the oil and gas industry — a global market projected to be worth nearly $6 billion by 2028.

This fresh insight comes from a report recently published by ResearchAndMarkets.com. The research outfit says North America leads global AI growth in oil and gas, with Houston playing a pivotal role.

“With AI-driven innovation at its core, the oil and gas industry is set to undergo a profound transformation, impacting everything from reservoir optimization to asset management and energy consumption strategies — setting a new standard for the future of the sector,” says ResearchAndMarkets.com. Continue reading.

Here's how Texas ranks among the greenest states

It might only be Texas' grass that is green. Photo via Getty Images

Turns out — Texas might not be as green as you thought.

A new report from WalletHub looked at 25 key metrics — from green buildings per capita to energy consumption from renewable resources — to evaluate the current health of states' environment and residents’ environmental-friendliness. Texas ranked No. 38, meaning it was the thirteenth least green state, only scoring 50.40 points out of 100.

“It’s important for every American to do their part to support greener living and protect our environment. However, it’s much easier being green in some states than others," writes Cassandra Happe, a WalletHub Analyst, in the report. "For example, if a state doesn’t have a great infrastructure for alternative-fuel vehicles, it becomes much harder for residents to adopt that technology. Living in a green state is also very beneficial for the health of you and your family, as you benefit from better air, soil and water quality.” Continue reading.

Texas finishes low on list of EV charging stations despite increased efforts in Houston

California, with its 14,500 charging stations, has more EV charging stations than New York, Florida, and Texas combined. Photo via Getty Images

In a new report that ranked states with the most electric vehicle chargers, Texas falls behind other similarly-sized states

The SmartAsset study looked at the closest EV charging stations equivalent to a trip to the gas station — factoring in each state's population. California, with its 14,500 charging stations, has five times the EV charging stations as New York (3,327), Florida (2,913) and Texas (2,472). While California ranked No. 1 on the list, Texas found itself at No. 41.

The report used EV charger and station data for each state from the U.S. Department of Energy for 2022 and 2021. Population data is for 2022 and comes from the U.S. Census Bureau 1-Year American Community Survey. Cities were also ranked by the number of fast chargers per capita. In 2022, Texas had 1,386 fast DC chargers, 2,472 EV charging stations, and a fast charger growth year over year 53.5 percent. Continue reading.

These are the most-read Houston energy transition startup news stories of the year. Photo via Getty Images

The future is here: Top Houston energy transition startup stories of the year

year in review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. EnergyCapital covers the entire energy transition ecosystem, including the businesses from major public corporations to small but growing startups with promising technologies. This year, top energy startup news included award-winning innovators, a new hub for energy tech startups, big deals, and more. Check out each of the most-read stories below — be sure to click to continue reading each article.

Local energy innovators recognized at annual Houston Innovation Awards

At an event celebrating Houston innovation, these four energy transition leaders were recognized. Photos courtesy

This week, the Houston innovation ecosystem celebrated big wins from the year, and members of the energy transition community were recognized alongside other innovators.

The Houston Innovation Awards honored over 40 finalists across categories, naming the 12 winners and honoring the two Trailblazer Legacy Awards at the event. The event, hosted at TMC Helix Park on November 14 named and celebrated the winners, which included four energy transition innovators. Click to see what energy leaders secured wins.

Houston startup taps new corporate partner for AI-backed sustainability consumer tech

IBM and Boxes recently partnered to integrate the IBM watsonx Assistant into Boxes devices, providing a way for consumer packaged brands to find out more than ever about what its customers like and want. Photo courtesy of Boxes

With the help of a new conversational artificial intelligence platform, a Houston startup is ready to let brands get up close and personal with consumers while minimizing waste.

IBM and Boxes recently partnered to integrate the IBM watsonx Assistant into Boxes devices, providing a way for consumer packaged brands to find out more than ever about what its customers like and want.

The Boxes device, about the size of a 40-inch television screen, dispenses products to consumers in a modern and sustainable spin on the old-fashioned large vending machine.

CEO Fernando Machin Gojdycz learned that business from his entrepreneur father, Carlos Daniel Machin, while growing up in Uruguay.

“That’s where my passion comes from — him,” Gojdycz says of his father. In 2016, Gojdycz founded Boxes in Uruguay with some engineer friends

Funded by a $2,000 grant from the University of Uruguay, the company's mission was “to democratize and economize affordable and sustainable shopping,” in part by eliminating wasteful single-use plastic packaging. Click to continue reading.

Houston startup selected for inaugural climatetech global entrepreneur competition

Syzygy Plasmonics is going to be competing in Gastech's new startup competition. Photo via Getty Images

A global natural gas, LNG, hydrogen, low-carbon solutions, and climate technology convention is coming to Houston next month — but only one Houston startup is geared up for the event's new startup competition.

Gastech invited 20 promising companies for its inaugural Gastech Start-Up Competition, and 11 companies have signed on to participate so far. Houston-based Syzygy Plasmonics, which created and is scaling a sustainable photocatalytic reactor, is currently the only local company among the participants.

“Gastech's focus on creating a low-carbon, affordable energy future aligns perfectly with Syzygy's drive to produce low-carbon, low-cost hydrogen, liquid fuels, and syngas," Syzygy Plasmonics CEO Trevor Best says. "We can't wait to represent Houston as the only startup from the area to be included among the 11 finalists in the Gastech Climatetech Global Entrepreneur Competition.” Click to continue reading.

Houston leaders launch new downtown hub to support energy transition innovation

Energy Tech Nexus has opened in downtown Houston. Photo by Natalie Harms/EnergyCapital

Three Houston energy innovators have cut the ribbon on a new space for energy transition innovation.

The Energy Tech Nexus, located in the historic Niels Esperson Building at the corner of Travis and Rusk Avenue, opened on September 10, which was proclaimed Energy Tech Nexus Day by the city.

Jason Ethier and Juliana Garaizar, formerly in leadership roles at Greentown Labs, teamed up with Nada Ahmed, previously headed innovation and transformation at Aker Solutions, launched ETN as a community for energy transition startups. The new hub plans to host incubation programs, provide mentorship, and open doors to funding and strategic partnerships for its members.

"We are creating more than a space for innovation," Garaizar says in a news release. "We are crafting a community where pioneers in technology and energy converge to challenge the status quo and accelerate the shift to sustainable energy solutions." Click to continue reading.

Houston bio-based materials founder rebrands, evolves future-focused sustainability startup

Zimri T. Hinshaw, founder and CEO of Rheom Materials, joins the Houston Innovators Podcast. Photo courtesy of Rheom

At first, Zimri T. Hinshaw just wanted to design a sustainable, vegan jacket inspired by bikers he saw in Tokyo. Now, he's running a bio-based materials company with two product lines and is ready to disrupt the fashion and automotive industries.

Hinshaw founded Rheom Materials (née Bucha Bio) in 2020, but a lot has changed since then. He moved the company from New York to Houston, built out a facility in Houston's East End Maker Hub, and rebranded to reflect the company's newest phase and extended product lines, deriving from dozens of different ingredients, including algae, seaweed, corn, other fruits and vegetables, and more.

"As a company, we pivoted our technology from growing kombucha sheets to grinding up bacteria nanocellulose from kombucha into our products and then we moved away from that entirely," Hinshaw says on the Houston Innovators Podcast. "Today, we're designing different materials that are more sustainable, and the inputs are varied."Click to continue reading.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Scientists warn greenhouse gas accumulation is accelerating and more extreme weather will come

Climate Report

Humans are on track to release so much greenhouse gas in less than three years that a key threshold for limiting global warming will be nearly unavoidable, according to a study released June 19.

The report predicts that society will have emitted enough carbon dioxide by early 2028 that crossing an important long-term temperature boundary will be more likely than not. The scientists calculate that by that point there will be enough of the heat-trapping gas in the atmosphere to create a 50-50 chance or greater that the world will be locked in to 1.5 degrees Celsius (2.7 degrees Fahrenheit) of long-term warming since preindustrial times. That level of gas accumulation, which comes from the burning of fuels like gasoline, oil and coal, is sooner than the same group of 60 international scientists calculated in a study last year.

“Things aren’t just getting worse. They’re getting worse faster,” said study co-author Zeke Hausfather of the tech firm Stripe and the climate monitoring group Berkeley Earth. “We’re actively moving in the wrong direction in a critical period of time that we would need to meet our most ambitious climate goals. Some reports, there’s a silver lining. I don’t think there really is one in this one.”

That 1.5 goal, first set in the 2015 Paris agreement, has been a cornerstone of international efforts to curb worsening climate change. Scientists say crossing that limit would mean worse heat waves and droughts, bigger storms and sea-level rise that could imperil small island nations. Over the last 150 years, scientists have established a direct correlation between the release of certain levels of carbon dioxide, along with other greenhouse gases like methane, and specific increases in global temperatures.

In Thursday's Indicators of Global Climate Change report, researchers calculated that society can spew only 143 billion more tons (130 billion metric tons) of carbon dioxide before the 1.5 limit becomes technically inevitable. The world is producing 46 billion tons (42 billion metric tons) a year, so that inevitability should hit around February 2028 because the report is measured from the start of this year, the scientists wrote. The world now stands at about 1.24 degrees Celsius (2.23 degrees Fahrenheit) of long-term warming since preindustrial times, the report said.

Earth's energy imbalance

The report, which was published in the journal Earth System Science Data, shows that the rate of human-caused warming per decade has increased to nearly half a degree (0.27 degrees Celsius) per decade, Hausfather said. And the imbalance between the heat Earth absorbs from the sun and the amount it radiates out to space, a key climate change signal, is accelerating, the report said.

“It's quite a depressing picture unfortunately, where if you look across the indicators, we find that records are really being broken everywhere,” said lead author Piers Forster, director of the Priestley Centre for Climate Futures at the University of Leeds in England. “I can't conceive of a situation where we can really avoid passing 1.5 degrees of very long-term temperature change.”

The increase in emissions from fossil-fuel burning is the main driver. But reduced particle pollution, which includes soot and smog, is another factor because those particles had a cooling effect that masked even more warming from appearing, scientists said. Changes in clouds also factor in. That all shows up in Earth’s energy imbalance, which is now 25% higher than it was just a decade or so ago, Forster said.

Earth’s energy imbalance “is the most important measure of the amount of heat being trapped in the system,” Hausfather said.

Earth keeps absorbing more and more heat than it releases. “It is very clearly accelerating. It’s worrisome,” he said.

Crossing the temperature limit

The planet temporarily passed the key 1.5 limit last year. The world hit 1.52 degrees Celsius (2.74 degrees Fahrenheit) of warming since preindustrial times for an entire year in 2024, but the Paris threshold is meant to be measured over a longer period, usually considered 20 years. Still, the globe could reach that long-term threshold in the next few years even if individual years haven't consistently hit that mark, because of how the Earth's carbon cycle works.

That 1.5 is “a clear limit, a political limit for which countries have decided that beyond which the impact of climate change would be unacceptable to their societies,” said study co-author Joeri Rogelj, a climate scientist at Imperial College London.

The mark is so important because once it is crossed, many small island nations could eventually disappear because of sea level rise, and scientific evidence shows that the impacts become particularly extreme beyond that level, especially hurting poor and vulnerable populations, he said. He added that efforts to curb emissions and the impacts of climate change must continue even if the 1.5 degree threshold is exceeded.

Crossing the threshold "means increasingly more frequent and severe climate extremes of the type we are now seeing all too often in the U.S. and around the world — unprecedented heat waves, extreme hot drought, extreme rainfall events, and bigger storms,” said University of Michigan environment school dean Jonathan Overpeck, who wasn't part of the study.

Andrew Dessler, a Texas A&M University climate scientist who wasn't part of the study, said the 1.5 goal was aspirational and not realistic, so people shouldn’t focus on that particular threshold.

“Missing it does not mean the end of the world,” Dessler said in an email, though he agreed that “each tenth of a degree of warming will bring increasingly worse impacts.”