M&A move

Houston energy PE firm acquires nuclear infrastructure company

Pelican Energy has acquired Container Technologies Industries, a manufacturer of containment solutions for the nuclear industry. Photo via containertechnologies.com

A Houston-based private equity firm has made a strategic acquisition.

Pelican Energy has acquired Container Technologies Industries from a group of private shareholders. CTI is a manufacturer of containment solutions for the nuclear industry and a certified HUBZone small-business whose customers include the U.S. Department of Energy, the U.S. Department of Defense and the commercial-nuclear space. Pelican makes investments in energy equipment and serves oil and gas companies and those in the nuclear sectors.

Pelican also named Danielle Castley as president of CTI. Castley has a PhD in material science with a background in radiation shielding material. She comes with over 10 years of experience in the nuclear industry. In addition to the majority buyout of legacy shareholders, Pelican will invest growth capital into business to expand capacity.

"CTI is a great company with a 20+ year track record of expansion,” Mike Scott, the founding partner of Pelican, says in a news release. “The company's highly-experienced team has a reputation of delivering the highest quality containment solutions, including specialty products and industry-standard containers. The business is well positioned to deliver products for growing customer demand."

The Houston company will now work closely with CTI’s homebase in Helenwood, Tennessee.

“We are excited to continue serving the Department of Energy and the thriving commercial nuclear industry,” Castley says in a news release. “I also look forward to leading CTI to innovate in manufacturing to address the emerging needs of advanced reactors.

"CTI will also expand our production capabilities to support Governor Lee's intent of establishing Tennessee as the leader of America's nuclear supply chain," she continues. "CTI is located in Helenwood, an economic development zone, where CTI will be actively recruiting to employ and train the next generation nuclear manufacturing workforce."

Trending News

 

A View From HETI

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

Trending News